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Abstract. By introducing the skip connection to bridge the semantic
gap between encoder and decoder, U-shape architecture has been proven
to be effective for recovering fine-grained details in dense prediction tasks.
However, such a mechanism cannot be directly applied to reconstruction-
based anomaly detection, since the skip connection might lead the model
overfitting to an identity mapping between the input and output. In
this paper, we propose a weight decay training strategy to progressively
mute the skip connections of U-Net, which effectively adapts U-shape
network to anomaly detection task. Thus, we are able to leverage the
modeling capabilities of U-Net architecture, and meanwhile prevent the
trained model from bypassing low-level features. Furthermore, we formu-
late an auxiliary task, namely histograms of oriented gradients (HOG)
prediction, to encourage the framework to deeply exploit contextual in-
formation from fundus images. The HOG feature descriptors with three
different resolutions are adopted as the auxiliary supervision signals.
The multi-task framework is dedicated to enforce the model to aggre-
gate shared significant commonalities and eventually improve the per-
formance of anomaly detection. Experimental results on Indian Diabetic
Retinopathy image Dataset (IDRiD) and Automatic Detection challenge
on Age-related Macular degeneration dataset (ADAM) validate the su-
periority of our method for detecting abnormalities in retinal fundus im-
ages. The source code is available at https://github.com/WentianZhang-
ML/WDMT-Net.
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Fundus image.
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1 Introduction

With the rapid development of artificial intelligence techniques in the past
decades, deep supervised learning has proven its potential for automatic ocu-
lar disease screening or diagnosis using retinal fundus images [10,18]. However,
training a highly accurate supervised classifier usually requires a fairly large
amount of labeled data, which is extremely expensive and difficult to acquire
due to the privacy issue of medical data. Even if the labeled data is available,
the model often easily suffers from the class imbalance problem, as the data
from healthy subjects is prevalent therefore easier to collect in a large quan-
tity. For those reasons, anomaly detection, aiming to identify abnormalities with
only normal images at the training stage, has drawn increasing attentions from
the community [21,23,24]. Current anomaly detection methods can mainly be
divided into two categories: the reconstruction-based and non-reconstruction-
based methods. The former methods are established upon the assumption: the
well-trained model can excellently reconstruct normal images while yield large re-
construction error for abnormal images. The latter ones rely on other techniques,
such as transfer learning [12] and discriminative learning [5]. Compared to the
non-reconstruction-based methods, the reconstruction-based ones are verified to
achieve more robust anomaly detection performance. Hence, in this paper, we
focus on the reconstruction-based anomaly detection for retinal fundus images.

By introducing skip connection in the encoder-decoder architecture, U-Net
and its variants have achieved wide successes in biomedical image segmenta-
tion and image-to-image translation [7,8,9,14]. However, it is surprising to find
that most existing reconstruction-based anomaly detection methods are built
upon auto-encoder architecture without skip connections. Therefore, it remains
an interesting question: whether the skip connection can be helpful for improv-
ing the anomaly detection performance? From another aspect, a recent research
has revealed the effectiveness of histograms of oriented gradients (HOG) predic-
tion for self-supervised representation learning [19]. For normal fundus images,
large HOG values can be obtained from the areas around the blood vessels and
optic disc, which contain the anatomical structure of the retina. Therefore, we
raise a second question: whether the HOG prediction task can serve the image
reconstruction (main task) as auxiliary and assist the anomaly detection?

To address the aforementioned two questions, we propose to train a multi-
task encoder-decoder network with weight decay skip connection (WDMT-Net)
for anomaly detection with retinal fundus images. The main contributions of
this work can be summarized as follows. First, we explore the applicability of
skip connection to reconstruction-based anomaly detection. Specifically, a weight
decay skip connection training strategy is presented to mitigate the identity
mapping problem of the U-Net architecture and meanwhile leverage its advan-
tage on feature representation learning. Second, we integrate an auxiliary task,
i.e., HOG prediction, to the anomaly detection framework, which can fully ex-
ploit the significant commonalities of normal fundus images. Last but not least,
our WDMT-Net outperforms the state-of-the-art methods on Indian Diabetic
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Fig. 1. The overall architecture of our proposed WDMT-Net for anomaly detection in
retinal fundus images. (a) Examples of HOG features with different cell sizes: images
from left to right are the HOG features obtained by cell sizes of 4×4, 8×8, and 16×16
pixels, respectively.

Retinopathy Image Dataset (IDRiD) [13], which demonstrates its effectiveness
for detecting abnormal regions in retinal fundus images.

2 Method

Fig. 1 shows the overall architecture of our proposed WDMT-Net. The main
components consist of a weight decay skip connection training strategy to lever-
age the modeling capabilities of U-Net architecture and a dual-output decoder
to exploit shared commonalities between two related tasks (i.e., image recon-
struction and HOG prediction).

2.1 Weight Decay Skip Connection Training

By introducing skip connections to bridge the semantic gap between encoder
and decoder, U-Net architecture has been proven to be effective in recovering
fine-grained details of the target subjects. However, such a mechanism is rarely
utilized in current reconstruction-based anomaly detection methods. The under-
lying reason may be that the skip connections at early stages tend to mislead
the model to bypass the lower levels of features and essentially learn an iden-
tity mapping function. Such a dilemma significantly degrades the performance
of U-Net for anomaly detection.

To mitigate this problem, we develop a simple-yet-effective weight decay
training strategy to gradually mute the skip connections. Different from the
original U-Net architecture, where the different levels of features in the encoder
are directly concatenated to the corresponding decoded features, in WDMT-Net,
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we first formulate the weighted feature map at each spatial resolution as follows:

Mi = (α⊗ Ei)⊕ ((1− α)⊗Di), (1)

where α ∈ [0, 1] is a weight factor; Ei and Di represent the feature maps from the
ith level of the encoder and decoder, respectively; ⊕ denotes feature addition;
and ⊗ denotes scalar multiplication. Then, Mi is concatenated to a detached
counterpart of Di, which yields

D
′

i = Concat(Mi, D̄i), (2)

where Concat(·) denotes the concatenation operation and ·̄ denotes the detach
operation. Note that we detach Di from the network learning to restrict the
gradients to propagate backward through the weighted feature path illustrated
in Eq. (1).

During the training phase, the weight factor α in Eq. (1) is first initialized to
1, and then gradually decayed to 0. As shown in Fig. 1, when α = 1, Ei is directly
skip connected to D̄i and our WDMT-Net is of the same structure to U-Net.
However, since D̄1 is detached from the network learning flow, the computed
gradients are not able to propagate from the upper layers to the lower layers
in the decoder, which means only the network parameters at the first learning
stage can be updated. As α decreases, the focus of optimization gradually varies
from the horizontal decoder-encoder skip connection direction to the up-down
direction. Therefore, the lower-level features learned at the early stage gradually
aggregate to the higher-level features. Finally, when α = 0, Mi is in fact a copy
of Di and our WDMT-Net degrades to an encoder-decoder network without
skip connection. In the final network, D′

i contains two copies of Di and this
redundancy can be removed by re-organizing the weights.

2.2 HOG Prediction as an Auxiliary Task

As revealed by a recent research, HOG prediction could be an exceedingly effec-
tive way for self-supervised representation learning [19]. Meanwhile, large HOG
values can be yielded around the blood vessels and optic disc, which provide the
useful anatomical structure information for the representation learning of nor-
mal retinal fundus images. Based on such observation, we propose to formulate
a multi-task network [15] to simultaneously regress the pixel intensity and the
HOG feature of the input images, which enforces the model to learn the shared
commonalities beneficial for anomaly detection. Let x denote an input image,
the proposed WDMT-Net can then be formulated as:

⟨x̂, x̂h⟩ = Dec(Enc(x)), (3)

where the Enc(·) and Dec(·) are the encoder and decoder of the WDMT-Net,
respectively; x̂ is the reconstruction of the input image; and x̂h is the predicted
HOG feature map. The overall learning objective is defined as:

L = ∥x̂− x∥22 + ∥x̂h − xh∥22 , (4)
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where the training sample x is merely drawn from the normal images; the ground-
truth of the corresponding HOG feature map xh ∈ Xh is randomly drawn from
a pool Xh that contains HOG features computed with different cell resolutions;
and || · ||2 denotes the L2-norm.

In essence, HOG is a feature descriptor, which describes the distribution of
gradient orientations or edge directions over the local cells [3], and with different
local cell size one can obtain HOG features in different scales. Fig. 1 (a) shows the
computed HOG features with three different spatial cell sizes, which are used
in the feature prediction label pool during the training phase. There are two
reasons for this setting: First, the use of multi-scale HOG features reflects the
fact that the internal structure of fundus images is of varying sizes. Second, the
random selection of HOG target label works as an effective data augmentation
strategy that increases the diversity of input-output data pairs being fed to the
model.

2.3 Anomaly Detection

Similar to existing reconstruction-based anomaly detection methods, our WDMT-
Net is built based on the assumption that the abnormal images cannot be well
reconstructed by a model trained merely with the normal images. Taking a gray
image xt as an input at the test stage, the proposed method can reconstruct
a new image x̂t. We compute the the anomaly score map for the pixel-level
anomaly detection in the image space as

AM = |x̂t − xt| . (5)

The larger the reconstruction error is, the higher possibility of the corresponding
region to be abnormal.

3 Experiments

3.1 Dataset and Implementation Details

In this section, we adopt two publicly available datasets, namely Indian Diabetic
Retinopathy Image Dataset (IDRiD) [13] and Automatic Detection challenge on
Age-related Macular degeneration dataset (ADAM) [4], for performance evalu-
ation. Following [23], we only choose the normal class from the original training
set to train the proposed model and use the lesion detection dataset as the test
set. In IDRiD dataset, there are 134 normal images for training, and 81 abnor-
mal images for testing. The pixel-level annotation of abnormal images contains
four different lesions, including haemorrhages, microaneurysms, hard and soft
exudates. For ADAM dataset, it contains 282 normal images and 118 abnormal
images with five different lesions and corresponding pixel-level annotations, in-
cluding drusen, exudate, hemorrhage, scars and other lesions. Since the original
images of both dataset are very large (i.e., 4,288×2,848 pixels and 2124×2056
pixels), we resize each image to 768×768 pixels and then crop them into 3×3
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Table 1. Ablation study of our WDMT-Net. SC, WD, and HOG represent the use of
skip connection, weight decay training strategy and HOG prediction, respectively.

Model Combination IDRiD [13] ADAM [4]
SC WD HOG AUC ACC F1-score AUC ACC F1-score

Auto-Encoder [2] 0.686 0.627 0.537 0.659 0.637 0.469
U-Net [14] ✓ 0.553 0.564 0.532 0.610 0.619 0.530
WDMT-Net w/o HOG ✓ ✓ 0.725 0.667 0.680 0.670 0.654 0.484
Auto-Encoder ✓ 0.715 0.655 0.664 0.662 0.643 0.470
U-Net ✓ ✓ 0.640 0.597 0.539 0.656 0.641 0.451
WDMT-Net (Ours) ✓ ✓ ✓ 0.748 0.694 0.711 0.687 0.660 0.474

non-overlapping patches. After that, we transform each patch to gray-scale im-
age for training and test. To supervise the HOG prediction task, we extract the
HOG features with three different cell sizes, as mentioned in Section 2.2.

In our implementation, the proposed method is trained by the Adam opti-
mizer with a learning rate of 1× 10−4 and a weight decay of 5× 10−5. All code
is implemented with PyTorch on a single NVIDIA RTX 3090 GPU with 24GB
of memory and the batch size is set as 32. For simplicity, the weight factor α is
initialized to 1 and decayed by ∆ per epoch, where ∆ is set as 0.05 by default.
The decaying procedure stops when α reaches 0. Following previous work [23],
the anomaly detection results are evaluated quantitatively by the the area under
the curve (AUC), balanced accuracy (ACC), and F1-score.

3.2 Ablation Study

We perform an ablation study to investigate the contribution made by differ-
ent components of the proposed WDMT-Net to anomaly detection in retinal
fundus images. To make a fair comparison, the network architectures of Auto-
Encoder [2] and U-Net [14] are set the same as our WDMT-Net, except for
the setting of skip connection. It is worthwhile to mention that models under
different settings are trained with the same protocol stated in Section 3.1,

Weight Decay Skip Connection Training. As shown in Table 1, the per-
formance of U-Net is worse than Auto-Encoder, no matter with or without the
auxiliary HOG prediction task. This indicates that directly applying skip connec-
tion to encoder-decoder network deteriorates the performance of anomaly detec-
tion. Nevertheless, by using the proposed weight decay skip connection training
strategy, WDMT-Net consistently achieves better results with and without HOG
prediction, which indicates the effectiveness of the proposed training strategy.

Moreover, in order to illustrate the role of skip connection in anomaly detec-
tion network, we visualize the image reconstruction loss versus training epoch
on IDRiD dataset in Fig. 2. From the reconstruction loss curves, we observe
that U-Net consistently achieves the lowest loss, which means skip connections
do enable U-Net to reconstruct the training images more accurately. However,
the same rule does not hold for anomaly detection at the test stage. Thus, we
can conclude that the naive utilization of skip connections do raise the issue of
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Fig. 2. The image reconstruction loss vs. training epochs on IDRiD dataset.

Table 2. Impact of the decay rate ∆ of the skip connection in our WDMT-Net.

Decay setting IDRiD [13] ADAM [4]
AUC ACC F1-score AUC ACC F1-score

∆ = 0.005 0.729 0.661 0.687 0.676 0.663 0.451
∆ = 0.01 0.738 0.685 0.692 0.678 0.662 0.482
∆ = 0.025 0.731 0.674 0.680 0.673 0.663 0.465
∆ = 0.05 0.748 0.694 0.711 0.687 0.660 0.474
∆ = 0.1 0.724 0.669 0.709 0.674 0.660 0.471

identity mapping. In contrast, our WDMT-Net can mitigate this problem by
using the weight decay training strategy.

The setting of hyper-parameters is also an important factor, which may affect
the model performance. To this end, we conduct experiments to evaluate the
model performance with different decay rate of the skip connections. As shown
in Table 2, we set ∆ as 0.005, 0.01, 0.025, 0.05 and 0.1 for comparison. It can be
observed that our WDMT-Net model with ∆ = 0.05 achieves the best results.

Multi-task Learning. To extensively evaluate the contribution of HOG pre-
diction for anomaly detection, we also apply the same multi-task learning scheme
for Auto-Encoder and U-Net. Due to the extra information provided by the HOG
prediction task, the anomaly detection performances of all multi-task models are
consistently improved as shown in Table 1.

The proposed method learns the multi-resolution HOG features from a label
pool that contains HOG features obtained by cell sizes of 4×4, 8×8, and 16×16
pixels, respectively. To verify the effectiveness of such a setting, we perform the
following experiments based on WDMT-Net. First, we formulate three models
where each of them only uses a single-scale of HOG features as the learning tar-
get. As shown in Table 3, among these three models, the one learned with HOG
of the 16×16 cell size obtains the best results, However, it still underperforms
our proposed method, which indicates the advantage of using multi-scale targets
in WDMT-Net. Moreover, we also compare the performance of WDMT-Net with
two alternative models in which the multi-scale HOG features are utilized in dif-
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Table 3. Impact of auxiliary HOG prediction task setting of the proposed WDMT-Net.

Setting of the prediction target IDRiD [13] ADAM [4]
AUC ACC F1-score AUC ACC F1-score

HOG features with 4×4 cells 0.736 0.668 0.704 0.677 0.653 0.468
HOG features with 8×8 cells 0.736 0.674 0.696 0.682 0.649 0.460
HOG features with 16×16 cells 0.738 0.671 0.685 0.682 0.660 0.493
Three HOG features as three outputs 0.731 0.678 0.720 0.660 0.647 0.439
The average of three HOG features 0.733 0.669 0.700 0.648 0.631 0.395
Three HOG features as a label pool 0.748 0.694 0.711 0.687 0.660 0.474

Table 4. Quantitative comparison of the proposed WDMT-Net with the state-of-the-
art methods.

Method IDRiD [13] ADAM [4]
AUC ACC F1-score AUC ACC F1-score

Auto-Encoder [2] 0.686 0.627 0.537 0.659 0.637 0.469
MemAE [6] 0.647 0.592 0.567 0.667 0.647 0.439
BiO-Net [20] 0.606 0.563 0.519 0.642 0.612 0.481
Attn U-Net [11] 0.581 0.555 0.558 0.645 0.617 0.408
AnoGAN [17] 0.630 0.618 0.579 0.677 0.661 0.455
f-AnoGAN [16] 0.698 0.686 0.637 0.662 0.638 0.455
GANomaly [1] 0.652 0.633 0.658 0.673 0.618 0.539
Sparse-GAN [22] 0.663 0.638 0.651 0.667 0.627 0.500
ProxyAno [23] 0.701 0.682 0.649 0.675 0.648 0.451
WDMT-Net (Ours) 0.748 0.694 0.711 0.687 0.660 0.474

ferent ways (i.e., to predict HOG at different resolutions simultaneously, and to
predict the average of them). As shown in Table 3, our method outperforms these
two alternative settings too in terms of AUC and ACC, which further indicates
the effectiveness of our random sampling method.

3.3 Comparison to State-of-the-art Methods

To further validate the superiority of our method, we compare our method with
several state-of-the-art anomaly detection methods, including Auto-Encoder [2],
MemAE [6], Attn U-Net [11], BiO-Net [20], AnoGAN [17], f-AnoGAN [16],
GANomaly [1], Sparse-GAN [22], and ProxyAno [23]. It can be seen that, the
proposed WDMT-Net outperforms the state-of-the-art methods. We further pro-
vide some results in Fig. 3. It can be seen that, the normal patches can be recon-
structed with a small error, while the abnormal patches (i.e., patches with lesion)
are reconstructed with a large error. The prediction AM matches the pixel-level
lesion ground truth pretty well. These results further validate the superiority of
our method.

4 Conclusion

In the work, we explored the applicability of skip connection and multi-task
learning to anomaly detection tasks. Concretely, a weight decay training strat-
egy was proposed to effectively adapt U-shape network for the anomaly detection
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Fig. 3. The qualitative results of WDMT-Net on IDRiD retinal fundus images.

task, which prevented the model from overfitting to the identity mapping intro-
duced by skip connections. Furthermore, an auxiliary task, i.e., HOG predic-
tion, was integrated to our framework to explore the effectiveness of multi-task
learning. Such a multi-task framework was dedicated to enforce the model to
aggregate shared commonalities between these two tasks and finally improve the
performance of anomaly detection. Extensive experiments on publicly available
IDRiD and ADAM fundus image datasets demonstrated the superiority of our
framework to the state-of-the-art anomaly detection methods. In the future, we
plan to expand the applicability of our WDMT-Net to more medical imaging
modalities.
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