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ABSTRACT Receiver operating characteristic (ROC) curve is a plot traced out by pairs of
false-positive rate and true-positive rate according to various decision threshold settings. The area under
the ROC curve (AUC) is widely used as a figure of merit to summarize a diagnostic system’s performance,
a binary classifier’s overall accuracy, or an energy detector’s power. Exploiting the equivalent relationship
between the sample version of AUC and Mann Whitney U statistic (MWUS), in this paper, we develop an
efficient algorithm of linearithmic order, based on dynamic programming, for unbiased estimation of the
mean and variance of MWUS. Monte Carlo simulations verify our algorithmic findings.

INDEX TERMS Area under the curve (AUC), dynamic programming, Mann-Whitney U statistic (MWUS),
receiver operating characteristic (ROC).

I. INTRODUCTION
Receiver Operating Characteristic (ROC) analysis is
a framework originating from the signal detection theory,
with an emphasis for the analysis of radar images during
World War II [1]–[3]. Since then, it has been applied in a
wide spectrum of scientific and engineering areas, including
data mining [4], computer vision [5], [6], signal process-
ing [7]–[9], machine learning [10], [11], medicine [12]–[14],
psychology [15] and biomedical informatics [16], among
others. In essence, ROC analysis is a supervised method that
requires prior knowledge of both the sample membership and
underlying cumulative distribution functions (cdfs hereafter)
which generate the two samples [17]. With this knowledge,
a two-dimensional curve, called the ROC curve, can be
plotted by pairs of false-positive rate and true-positive rate
according to various decision threshold settings.

The area under the curve (AUC) is often considered
as an overall summary of diagnostic accuracy in the
literature [18], [19]. It is well known that the Mann-
Whitney U statistic (MWUS) is an unbiased estimator of
AUC [20]. To obtain the distributional information of this
estimator, many researchers, such as DeLong et al. [21],
Hanley et al. [22] and Brunner et al. [23]–[26], among others,
have developed algorithms for computing the estimates of
MWUS’s variance. DeLong’s algorithm is easy to implement,

but is only asymptotically unbiased and in quadratic time.
Hanley’s algorithm, while having a linearithmic time com-
plexity, is only unbiased when the samples follow nega-
tive exponential distributions [27], which is a rather ristrict
assumption about the parent distribution of the samples.
Brunner’s rank-based method is also of linearithmic order,
but, as demonstrated by the simulation results in this work,
is only asymptotically unbiased. Recently, Xu et al. [28]
proposed an efficient algorithm for estimating variance of the
estimator, but only applicable to samples following continu-
ous distributions.

To overcome the disadvantages of the existing methods, in
this paper, we developed a linearithmic algorithm for unbi-
ased estimation of the variance of MWUS, which possesses
the following properties. Firstly, our algorithm is unified, that
is, it can embrace samples from both continuous and non-
continuous populations. Secondly, it is unbiased, that is, the
mean of its output equals the population version of MWUS’s
variance, which is a desired feature in statistical analysis.
Thirdly, it is in linearithmic time, that is, the time complexity
is in the order of the product of sample size and its logarithm.
Last but not least, the proposed algorithm is nonparametric,
that is, it depends only on the samples, without making
any parametric model assumptions concerning the functional
forms of the cdfs.
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The rest of this paper is organized as follows. Section II
gives the basic definition of the unbiased estimator of AUC,
i.e., the MWUS, as well as the associated general formu-
las concerning its variance. We also develop a linearithmic
algorithm for computing MWUS and its variance based on
dynamic programming. In section III, numerical experiments
are undertaken to demonstrate the efficiency and unbiased-
ness of our algorithm. Finally, we draw our conclusion in
section IV.

II. METHOD
For completeness and ease of later development, in this
section we describe the definition of nonparametric estima-
tor of AUC and the well known formulas concerning its
expectation and variance. In addition, we develop an unbiased
algorithm in nonparametric way, for estimating the variance
of AUC without knowing the underlying parent distributions
based on our efficient computing structure. For notational
convenience, throughout we denote by E(·) and V(·) the
expectation and variance of random variables, respectively.

A. UNBIASED ESTIMATIOR OF AUC
Let X1, . . . ,Xm and Y1, . . . ,Yn be two independent and
identically distributed (i.i.d) samples drawn respectively from
two populations (whose distributions can be either continuous
or discrete). Then, from the work of Bamber [20], an empiri-
cal unbiased estimator of AUC can be computed over a kernel
functionH(·) as:

θ̂ ,
1
mn

m∑
i=1

n∑
j=1

H(Xi − Yj). (1)

where

H(t) =


1 t > 0
1
2

t = 0

0 t < 0.

(2)

is the familiar Heaviside function. Note that (1) is also
referred to as the MWUS in the statistics textbook.

B. EXPECTATION AND VARIANCE OF θ̂
Taking expectation on both sides of Eq. (2) leads readily to

E(θ̂ ) = Pr(X > Y )+
1
2
Pr(X = Y )︸ ︷︷ ︸

,θ

. (3)

From (3), it follows that θ = 0.5whenX and Y are identically
distributed; whereas θ = 1 if the values of Y are consistently
larger than those of X . Therefore, AUC is often employed
as an index to characterize the extent of separation of the
distributions of X and Y .
From the work of Noether [29], the variance of θ̂ can be

written as

V(θ̂ ) =
Q0 + (n− 1)Q1 + (m− 1)Q2

mn
. (4)

where

Q0 = E
[
H(Xi − Yj)H(Xi − Yj)

]
− θ2, (5)

Q1 = E
[
H(Xi − Yj)H(Xi − Yj′ )

]
− θ2 j 6= j′, (6)

Q2 = E
[
H(Xi − Yj)H(Xi′ − Yj)

]
− θ2 i 6= i′. (7)

C. UNBIASED ESTIMATOR OF V(θ̂)—SLOW VERSION
Theorem 1: Let θ̂ be defined as in (1) with respect to two

i.i.d. samples X1, . . . ,Xm and Y1, . . . ,Yn drawn from two
populations, respectively. Let σ 2

θ̂
be a compact notation of

V(θ̂ ) in (4). Write

σ̂ 2
θ̂
=
Q̂0 + (n− 1)Q̂1 + (m− 1)Q̂2

(m− 1)(n− 1)
(8)

where

Q̂0=
1
mn

m∑
i=1

n∑
j=1

[
H(Xi − Yj)H(Xi − Yj)

]
− θ̂2, (9)

Q̂1=
1

mn(n− 1)

m∑
i=1

n∑ n∑
j 6=j′=1

[
H(Xi − Yj)H(Xi − Yj′ )

]
− θ̂2,

(10)

Q̂2=
1

m(m− 1)n

m∑ m∑
i 6=i′=1

n∑
j=1

[
H(Xi − Yj)H(Xi′ − Yj)

]
− θ̂2.

(11)

Then σ̂ 2
θ̂
is an unbiased estimator of σ 2

θ̂
, i.e., E(σ̂ 2

θ̂
) = σ 2

θ̂
.

Proof: To show that E(σ̂ 2
θ̂
) = σ 2

θ̂
, it suffices to evaluate

the expectations of the Q̂-terms in the numerator of (8).
Applying the relationship of σ 2

θ̂
= E(θ̂2)− θ2 yields

E(θ̂2) = θ2 + σ 2
θ̂
. (12)

Taking expectation of both sides of (9) and using (12), it
follows that

E(Q̂0) = E

 1
mn

m∑
i=1

n∑
j=1

H(Xi − Yj)H(Xi − Yj)− θ̂2


=

1
mn

m∑
i=1

n∑
j=1

E
[
H(Xi − Yj)H(Xi − Yj)

]
− E(θ̂2)

= E
[
H(Xi − Yj)H(Xi − Yj)

]
− θ2 − σ 2

θ̂

= Q0 − σ
2
θ̂
. (13)

In a similar manner, we also have

E(Q̂1) = Q1 − σ
2
θ̂
. (14)

and

E(Q̂2) = Q2 − σ
2
θ̂
. (15)

Taking expectation of both sides of (8) and
substituting(13)–(15) thereafter along with some straightfor-
ward algebra, we find E(σ̂ 2

θ̂
) = σ 2

θ̂
, hence the result. �
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TABLE 1. Quantities needed in the fast algorithm.

D. UNBIASED ESTIMATOR OF V(θ̂)—FAST VERSION
It is noteworthy that, although unbiased, the algorithm based
on Eq. (8)–(11) is very inefficient for large m and n, due
to the cubic order of the time complexity of the Q1 and
Q2 terms. Fortunately, however, a linearithmic algorithm can
be constructed via rewriting Eqs. (1), (9)–(11) involved in
Theorem 1 in terms of S1 to S10 in Table 1, which stand for the
number of events satisfying the relation inside the respective
brackets. As will be shown later on, these S-terms can all be
computed with dynamic programming. Note that in Table 1,
X ′ and Y ′ stand for i.i.d copies of X and Y , respectively.
Theorem 2: Let θ̂ be defined as in (1) with respect to two

i.i.d samples, X1, . . . ,Xm and Y1, . . . ,Yn, respectively. Then
the estimator σ 2

θ̂
in Theorem 1 is equivalent to

σ̂ 2
θ̂
= ς̂2

θ̂
=

Q̂0 + (n− 1)Q̂1 + (m− 1)Q̂′2
(m− 1)(n− 1)

, (16)

where

θ̂ =
1
mn

m∑
i=1

n∑
j=1

H(Xi − Yj) =
S1/2+ S2

mn
, (17)

Q̂0 =
1
mn

m∑
i=1

n∑
j=1

[H(Xi − Yj)H(Xi − Yj)]− θ̂2

=
S1/4+ S2

mn
− θ̂2, (18)

Q̂1 =
1

mn(n− 1)

m∑
i=1

n∑ n∑
j 6=j′=1

[H(Xi − Yj)H(Xi − Yj′ )]− θ̂
2

=
2S3 + S4 + S5 + (S6 − S1)/4− S2

mn(n− 1)
− θ̂2, (19)

and

Q̂2 =
1

m(m− 1)n

n∑
j=1

m∑ m∑
i 6=i′=1

[H(Xi − Yj)H(Xi′ − Yj)]− θ̂
2

=
2S7 + S8 + S9 + (S10 − S1)/4− S2

m(m− 1)n
− θ̂2. (20)

Proof: Let I(·) be the indicator function which equals
unity (zero) if the statement inside the bracket is true (false).
For compactness, write n[2] , n(n − 1). Then it follows
readily that

H(X − Y ) = I(X > Y )+
1
2
I(X = Y ). (21)

Substituting this result into (1), we have

θ̂ =
1
mn

m∑
i=1

n∑
j=1

[
I(Xi > Yj)+

1
2
I(Xi = Yj)

]

=
1
mn

m∑
i=1

n∑
j=1

[
I(Xi > Yj)

]
︸ ︷︷ ︸

E(X>Y )=S2

+
1

2mn

m∑
i=1

n∑
j=1

[
I(Xi = Yj)

]
︸ ︷︷ ︸

E(X=Y )=S1

=
S1/2+ S2

mn
which is Eq. (17). From (9) and (10), we have, respectively,

Q̂0 =
1
mn

m∑
i=1

n∑
j=1

[
I(Xi > Yj)+

1
2
I(Xi = Yj)

]2
− θ̂2

=
1
mn

m∑
i=1

n∑
j=1

[
I(Xi > Yj)+

1
4
I(Xi = Yj)

]
− θ̂2

=
1
mn

m∑
i=1

n∑
j=1

[
I(Xi > Yj)

]
︸ ︷︷ ︸

E(X>Y )=S2

+
1

4mn

m∑
i=1

n∑
j=1

[
I(Xi = Yj)

]
︸ ︷︷ ︸

E(X=Y )=S1

−θ̂2

=
S1/4+ S2

mn
− θ̂2 = Q̂0

which verifies the statement in (18), and

Q̂1 =
1

mn[2]

m∑
i=1

n∑ n∑
j 6=j′=1

[
H(Xi − Yj)H(Xi − Yj′ )

]
− θ̂2

=
1

mn[2]

m∑
i=1

n∑
j=1

n∑
j′=1

[
H(Xi − Yj)H(Xi − Yj′ )

]
−

1
mn[2]

m∑
i=1

n∑
j=1

[
H(Xi − Yj)H(Xi − Yj)

]
− θ̂2

=
1

mn[2]

m∑
i=1

n∑
j=1

n∑
j′=1

[
I(Xi > Yj)I(Xi > Yj′ )

]
︸ ︷︷ ︸

E(X>Y>Y ′)+E(X>Y ′>Y )+E(X>Y=Y ′)⇒2S3+S4

+
1

2mn[2]

m∑
i=1

n∑
j=1

n∑
j′=1

[
I(Xi > Yj)I(Xi = Yj′ )

]
︸ ︷︷ ︸

E(X=Y ′>Y )⇒S5

+
1

2mn[2]

m∑
i=1

n∑
j=1

n∑
j′=1

[
I(Xi > Yj′ )I(Xi = Yj)

]
︸ ︷︷ ︸

E(X=Y>Y ′)⇒S5

+
1

4mn[2]

m∑
i=1

n∑
j=1

n∑
j′=1

[
I(Xi = Yj)I(Xi = Yj′ )

]
︸ ︷︷ ︸

E(X=Y=Y ′)⇒S6
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−
1

mn[2]

m∑
i=1

n∑
j=1

[
I(Xi > Yj)+

1
4
I(Xi = Yj)

]
︸ ︷︷ ︸

S2+ 1
4 S1

−θ̂2

=
2S3 + S4 + S5 + 1

4 (S6 − S1)− S2
mn(n− 1)

− θ̂2

= Q̂1

which confirms the result in Eq. (19). In a similar manner,
we also have the result in Eq. (20). Hence the theorem
follows. �

E. EFFICIENT COMPUTATIONS OF S1 TO S10 BASED
ON DYNAMIC PROGRAMMING
Let Z1, . . . ,Zm+n be a combined sequence of X1, · · · ,Xm
and Y1, · · · ,Yn. Sorting this sequence in ascending order
yields a new sequence of order statistics [28], [30]–[34]

Z(1) = · · · = Z(1)︸ ︷︷ ︸
Block1

< · · · < Z(J ) = · · · = Z(J )(= Zi)︸ ︷︷ ︸
BlockJ

< · · · < Z(K ) = · · · = Z(K )︸ ︷︷ ︸
BlockK

. (22)

Suppose that the elements of BlockJ are all equal to Zi.
Let ai (ci) be the number of X ’s (Y ’s) equals to Zi, for
i = 1, . . . ,K . Then we can obtain two count vectors, say,
CX , [a1 . . . aK ] and CY , [c1 . . . cK ], based on the
Z(i)-sequence in (22), which, as shown in Fig. 1, can be
obtained in a linearithmic time, i.e., O[(m + n) log(m + n)],
by using the popular sorting algorithms in the textbook [35].
Given CX and CY , we can compute all S-terms in linear time
O(K ), where K ≤ m + n. Below we only elaborate the
procedure of computing the first three S terms. The algo-
rithms for the rest terms can be constructed in a similar and
straightforward manner, and thus omitted for brevity. Now
let us explain the computing structure by looking into the
definitions of S1 to S3 one by one.

1) PROCEDURE FOR COMPUTING S1
From Table 1, the definition of S1 is

S1 = E(X = Y ) =
m∑
i=1

n∑
j=1

I(Xi = Yj)

=

K∑
k=1

[
m∑
i=1

I(Xi = Zk )

] n∑
j=1

I(Yj = Zk )

 = K∑
k=1

akck .

(23)

If we construct a count matrix C1 by stacking the two count
vectors CX (Row1) and CY (Row2) together, S1 can then be
calculated with the procedure depicted in Fig. 2(a). Specifi-
cally, the update rule is

C[1,k] =

{
C[1,k] · C[2,k] k = 1;
C[1,k] · C[2,k] + C[1,k−1] 2 ≤ k ≤ K .

FIGURE 1. Fast algorithm for computing the two count vectors CX and
CY . In Line 3, W is the ordered Z-sequence in (22); whereas in Line 4,
L contains the labels of Wi , i = 1, . . . ,m+ n, i.e., Li = ’X’ if Wi comes
from X -class, and Li = ’Y’ if Wi comes from Y -class. Line 5 appends an
extra element Wm+n + 1 (= max(Z)+ 1) to W in order to prevent
overflow in Line 13. After Lines 10 to 25, we obtain two lists,
CX1, . . . ,CXk and CY1, . . . ,CYk . Finally, in Lines 26 to 28, the extra
(last) elements (due to Line 5) in CX-list and CY-list are removed and the
rest are stored in CX and CY , respectively. It is noteworthy that the most
time consuming procedure is the sorting operation in Line 3, which can
be accomplished by any efficient sorting algorithms, such as the familiar
quicksort and merge sort that are available in the textbook [35].

As the index k running from 1 to K , the final desired result∑
akck in Eq. (23) is stored in the cell of C1[1,K ].

2) PROCEDURE FOR COMPUTING S2
From Table 1, the definition of S2 is

S2 = E(X > Y ) =
m∑
i=1

n∑
j=1

I(Xi > Yj)

=

K∑
k=2

[
m∑
i=1

I(Xi = Zk )

] n∑
j=1

I(Yj < Zk )


=

K∑
k=2

k−1∑
l=1

akcl (24)
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FIGURE 2. Diagrams for computing S1 to S10 that listed in Table 1, where
K = 7 is just for purpose of demonstration. (a) S1. (b) S2. (c) S3. (d) S4. (e)
S5. (f) S6. (g) S7. (h) S8. (i) S9. (j) S10.

which can be computed, also based on the two count vectors
CX and CY , with the procedure shown in Fig. 2(b). Let C2
be a 2 × K matrix with first row being CX and second row
being CY . Then, with C2, the update rule for S2 is

C[r,k]

=


0 r = 1, k = 1;

C[r,k] + C[r,k−1] r = 2, 2 ≤ k ≤ K ;

C[r,k] · C[r+1,k−1] + C[r,k−1] r = 1, 2 ≤ k ≤ K .

As k running from 2 to K , the final desired result (the right-
most term) in Eq. (24) is stored in the cell of C2[1,K ].

3) PROCEDURE FOR COMPUTING S3 AND OTHERS
By its definition in Table 1, it follows that

S3 = E(X > Y > Y ′) =
m∑
i=1

n∑
j=1

n∑
l=1

I(Xi > Yj > Yl)

=

K∑
i=3

i−1∑
j=2

j−1∑
l=1

aicjcl . (25)

To compute S3, we first construct a 3 × K count matrix C3,
with three rows being CX , CY and CY , respectively. We fur-
ther set C3[1,1], C3[1,2] and C3[2,1] to be 0. Then, as shown
in Fig. 2(c), the programming path goes from the southwest
corner towards the northeast corner, with the corresponding
update rule of

C[r,k]

=


C[r,k] + C[r,k−1] r = 3, 2 ≤ k ≤ K ;

C[r,k] · C[r+1,k−1] + C[r,k−1] r = 2, 2 ≤ k ≤ K ;

C[r,k] · C[r+1,k−1] + C[r,k−1] r = 1, 2 ≤ k ≤ K .

When k increases up to K , the desired value of S3 is finally
stored in the cell of C3[1,K ].

In a similar manner, it follows from Table 1 again that
S4–S10 can be expressed as

S4 =
m∑
i=1

n∑
j=1

n∑
l=1

I(Xi > Yj = Yl) =
K∑
i=2

i−1∑
j=1

aic2j (26)

S5 =
m∑
i=1

n∑
j=1

n∑
l=1

I(Xi = Yj > Yl) =
K∑
i=2

i−1∑
j=1

aicicj (27)

S6 =
m∑
i=1

n∑
j=1

n∑
l=1

I(Xi = Yj = Yl) =
K∑
i=1

aib2i (28)

S7 =
m∑
i=1

n∑
j=1

n∑
l=1

I(Xi > Xj > Yl) =
K∑
i=3

i−1∑
j=2

j−1∑
l=1

aiajcl

(29)

S8 =
m∑
i=1

n∑
j=1

n∑
l=1

I(Xi = Xj > Yl) =
K∑
i=2

i−1∑
j=1

a2i cj (30)

S9 =
m∑
i=1

n∑
j=1

n∑
l=1

I(Xi > Xj = Yl) =
K∑
i=2

i−1∑
j=1

aiajcj (31)

S10 =
m∑
i=1

n∑
j=1

n∑
l=1

I(Xi = Xj = Yl) =
K∑
i=1

a2i bi (32)

which can all be computed based on the diagrams illustrated
in Fig. 2 (d)–(j), respectively.

III. NUMERICAL RESULTS
In this section, we compare our dynamic programming based
algorithm (Theorem 2) with the rank-based state-of-the-art
one [23]–[26], in terms of the unbiasedness as well as the
computational efficiency, for estimating the variance of the
MWUS defined in Eq. (1). Throughout this section, Monte
Carlo experiments are undertaken for sample sizes within
[5, 100], with the number of trials being 106 for reason of
accuracy. All simulations are undertaken by functions in
Matlab Statistics ToolboxTM.
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FIGURE 3. Comparison of unbiasedness, in terms of RE, between the estimator in Eq. (16) and the rank-based method
described in [23]–[26]. a) Null case under Normal distribution, where both X and Y follow N (0,1). b) Non-null case under
Normal distribution, where X follows N (0,1) and Y follows N (4,1). c) Null case under Poisson distribution, where both X and
Y follow Poisson distributions with pmfs Pr(X = k) = Pr(Y = k) = 2k e−2/k! for k = 0,1,2, . . . ,∞. d) Non-null case under
Poisson distribution, with pmfs of Pr(X = k) = 2k e−2/k! and Pr(Y = k) = 4k e−4/k! for k = 0,1,2, . . . ,∞.

A. VERICICATION OF UNBIASEDNESS

We first illustrate that, in contrast to the rank-based
method [23]–[26], our method in (16) is an unbiased estima-
tor of the variance of MWUS. In the following, we generate
the two samples X and Y based on normal distributions
(denoted by N (µ, σ 2) with mean µ and variance σ 2) and
Poisson distributions, respectively. Specifically, the following
four scenarios are included in this study:

1) X and Y both follow the standard normal distribution
N (0, 1),

2) X and Y follow N (0, 1) and N (4, 1), respectively,
3) X and Y both follow a Poisson distribution with pmfs

Pr(X = k) = Pr(Y = k) = 2ke−2/k! for
k = 0, 1, 2, . . . ,∞,

4) X follows a Poisson distribution with pmf Pr(X = k) =
2ke−2/k! and Y follows a Poisson distribution with pmf
Pr(Y = k) = 4ke−4/k!, where k = 0, 1, 2, . . . ,∞.

Under the four scenarios mentioned above, we compare
the two methods in terms of the relative error (RE), which

is defined by

REδ ,
E(V̂δ − VE )

VE

where the suffix δ ∈ {DP,RB} indicates one of the two
method mentioned above, V̂DP stands for our method based
on dynamic programming in (16), V̂RB for the rank-based
method [23]–[26], and VE for the empirical variance calcu-
ated based on Monte Carlo experiments.

Fig. 3 shows the comparison results, in terms of RE, with
respect to the two methods under the four scenarios. The
top two panels are results corresponding to normal distri-
butions (continuous case); whereas the bottom two panels
are results corresponding to Poisson distributions (discrete
case). It is clear that V̂DP outperfoms V̂RB, in the sense that
the former’s REs are all approximately zero, which confirms
the unbiasedness of our method. On the other hand, all the
curves ofRERB deviate from zero, especially when the sample
sizes are small. However, with increase of sample size, RERB
decreases gradually towards zero. In other words, V̂RB is
only an asymptotically unbiased estimator of the variance of
MWUS.
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FIGURE 4. Comparative results of CPU time between the algorithms based
on (8), (16) and the rank-based method. For simplicity, the sample sizes
of X and Y are set to be equal. A log scale is used for better visual effect.

B. COMPARISON OF COMPUTATIONAL LOADS
To demonstrate the computational efficiency of our new algo-
rithm, we generate two normal samples, each being i.i.d, i.e.,
{Xi}mi=1 ∼ N (0, 0.4) and {Yj}nj=1 ∼ N (1, 0.6). Since the
parameters have little if no effect on the computational speed
comparison, they are chosen arbitrarily. Fig. 4 compares the
computational loads between the algorithms based on Eq. (8),
Eq. (16), and the rank-based approach [23]–[26] over the
sample sizes m = n = 10(10)200, where 10(10)200 stands
for a list starting from 10 to 200with an increment of 10. Each
of the algorithms is run for 100 times for stability. As shown
in Fig. 4, it is observed that, although both in linearithmic
timeO[(m+n) log(m+n)], our algorithm in (16) runs a little
faster than the rank-based approach. And it is of no suprise
that the version established in (8) is the slowest one, since its
time complexity is in a cubic order.

IV. CONCLUSION
In this paper, we proposed an efficient algorithm for comput-
ing the variance of MWUS, an unbiased estimator of AUC,
based on dynamic programming. Theoretical derivations sug-
gest that (a) it can act as an unbiased estimator for the variance
of MWUS, and (b) its time complexity is of linearithmic
order, much lower than a conventional one and comparable
with the state-of-the-art rank-based method. Besides these
advantages, the structure of this algorithm can be easily
extended to the three- or multi-class cases [36]. In addition,
a current method for cell detection can be improved based on
our algorithm [37]. The methodology established in this work
might shed new light on the topic of ROC analysis, which
is an indispensable tool in many scientific and engineering
areas.
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