
Optic Disc Segmentation from Retinal Fundus Images
via Deep Object Detection Networks

Xu Sun1, Yanwu Xu1, Wei Zhao1, Tianyuan You1, Jiang Liu2

Abstract— Accurate optic disc (OD) segmentation is a funda-
mental step in computer-aided ocular disease diagnosis. In this
paper, we propose a new pipeline to segment OD from retinal
fundus images based on deep object detection networks. The
fundus image segmentation problem is redefined as a relatively
more straightforward object detection task. This then allows
us to determine the OD boundary simply by transforming the
predicted bounding box into a vertical and non-rotated ellipse.
Using Faster R-CNN as the object detector, our method achieves
state-of-the-art OD segmentation results on ORIGA dataset,
outperforming existing methods in this field.

I. INTRODUCTION

The optic disc (OD) is the exit point where ganglion cell
axons leave the eye. Reliable OD segmentation is a necessary
step in the diagnosis of various retinal diseases such as
diabetic retinopathy and glaucoma.

In the literature, a plenty of research has been conducted
to solve this challenging problem. Since the traditional
segmentation techniques are usually difficult to achieve
good performance, especially in illness cases, some machine
learning based approaches have been investigated. However,
comparing to the latest developed deep neural networks
(DNN) based methods, the performance of these conven-
tional machine learning approaches mostly replies on hand-
crafted features, thus the performance is expected to be
further improved by introducing DNN methods to learn more
discriminative features automatically.

Recently, DNN based segmentation approaches, like M-
Net [1], is shown to outperform segmentation and conven-
tional machine learning based methods. However, like most
of the existing approaches, this work is still a two-step
approach. It performs coarse boundary detection first and
then applies an ellipse fitting to generate a smooth ellipse
shape boundary.

Actually, there are two typical methods for the optic cup
(OC) segmentation, which do not need performing ellipse
fitting and can be similarly introduced into OD segmentation.
Xu et al. [2] proposed a sliding window approach to
localize the optic cup directly with a bunch of rectangles.
In [3], OC ellipse parameters are directly calculated from
OD reconstruction. These work are based on a simple yet
effective assumption that the optic disc and cup are in non-
rotated ellipse shape, and this is well accepted by many
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ophthalmologists and researchers to simplify the OD/OC
analysis procedure.

Inspired by [2], a natural question arises as if we could
lend impressive object detection results of deep learning from
computer vision community to investigate the challenging
OD segmentation problem. Follow this basic concept, in this
paper, we propose a simple yet effective one-step end-to-end
method to segment optic disc from a retinal fundus image
using deep object detection architectures.

II. RELATED WORK
A. Deep Object Detection Networks

With the resurgence of deep learning, computer vision
community has significantly improved object detection re-
sults over a short period of time. Modern object detection
systems can mainly be divided into two groups: one-stage
detectors and two-stage detectors. OverFeat [4] was one
of the pioneered modern one-stage object detector based
on deep networks. More recent works like RetinaNet [5],
have demonstrated their promising results. Generally, these
approaches are applied over regularly sampled candidate
object locations across an image. In contrast, two-stage
detectors are based on a proposal-driven mechanism, where
a classifier is applied to a sparse set of candidate object
locations. Following the R-CNN work [6], recent progresses
on two-stage detectors have focused on processing all regions
with only one shared feature map, and on eliminating explicit
region proposal methods by directly predicting the bounding
boxes. Various extensions to this framework have been
presented, e.g., Faster R-CNN [7], and Mask-R-CNN [8].

B. Optic Disc Segmentation
As mentioned in the introduction, a plenty of research have

been conducted for the OD segmentation. These methods can
be roughly categorized into three types:

• Traditional segmentation methods: Pallawala et al.
proposed an ellipse fitting and wavelet transform
method [9] to detect the OD contour. Liu et al.
applied a level-set [10] based approach to segment
OD and OC. Similarly, in [11], active shape model
was employed to detect the boundaries of OD and
OC sequentially. Cheng et al. developed a template
matching method [12] to segment OD with additional
peripapillary atrophy elimination.

• Conventional machine learning based methods with
hand-crafted features: Generally, these methods deal
with classification issues, i.e., identifying whether a
pixel or small region (e.g. super-pixels) on, inside of or
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Fig. 1. Illustration of the proposed pipeline for OD segmentation from color fundus images, where red region denotes the detected OD.

outside of the OD boundary. In [13], the local texture
features around each point of interest are utilized to
classify this point is on the OD boundary or not. In [14],
Cheng et al. utilizes contrast enhanced histogram and
center surround statistics features to classify a super-
pixel is within the OD or not. However, reliance on
hand-crafted features make these methods susceptible
to low quality images and pathological regions.

• Deep neural networks based methods: To our knowl-
edge, very few DNN based approaches have been stud-
ied for OD segmentation/localization. However, this is
a promising direction to develop reliable and efficient
automated OD segmentation and computer-aided ocular
disease diagnosis systems. The latest work of this kind
is probably [1], in which a M-net deep architecture
is proposed for OD boundary segmentation after polar
transformation.

III. METHOD
In this paper, we propose a new pipeline for OD segmen-

tation from retinal fundus images. The pipeline of our basic
algorithm is shown in Fig. 1.

• We first feed the color fundus image into a deep object
detection networks to get the most confident bounding
box for OD.

• The parameters of this bounding box are then used to
generate an ellipse-like boundary which well approxi-
mates the OD appearance.

• If necessary, segmentation masks can be obtained based
on the generated boundary.

A. Network Architecture
In this paper, we adopt Faster R-CNN [7] as the object

detector due to its flexibility and robustness. Faster R-CNN
consists of two stages. The first stage, called region proposal
network (RPN), processes images with a deep convolutional
network (e.g., VGG-16 [15]), and predicts a set of rectangular
candidate object locations using features at some selected
intermediate layer (e.g., “conv5”). During training, the loss
for this first stage is defined as

L = Lcls + Lreg (1)

where Lcls and Lreg denote the classification loss and
bounding box regression loss, respectively. We refer readers
to [7] for the more details of these two quantities.

In the second stage, these (e.g., 300) candidate bounding
boxes are mapped to the same intermediate feature space,
and then fed to the subsequent layers of the convolutional
network (e.g., “fc6” followed by “fc7”) to output a class
label and a bounding box offset for each proposal. The
loss function for this second stage box classifier also takes
the form of (1) using proposals produced from the RPN as
anchors.

B. Segmentation Generation

The object detector predicts a probability score for each
candidate bounding box in the input image. Non-maximum
suppression (NMS) is often required to reduce redundancy.
However, for OD detection, a retinal fundus image contains
one and only one object. Therefore, NMS is no longer
necessary in our pipeline since we only need to retain the
bounding box with the highest confidence score.

Given the bounding box, the question now is how to
generate a satisfactory OD boundary. Since the OD appears
as a bright yellowish elliptical region in color fundus images,
it is promising to use an ellipse to approximate the shape of
OD. Furthermore, we also observe that localizing a bounding
box requires exactly the same parameters as a vertical
ellipse, i.e., its width, height, and central point (horizontal
and vertical coordinates). With this in mind, we propose to
generate the OD boundary by simply redrawing the predicted
bounding box as a vertical ellipse.

IV. EXPERIMENTS

A. Dataset and Evaluation Criteria

We use the ORIGA dataset [16] for our experiments, and
evaluate the proposed disc segmentation method using the
manual masks as ground truth. The ORIGA dataset contains
650 images with a uniform size of 3, 072 × 2, 048, where
168 images are with glaucoma and the other 482 images are
normal. In every image, OD is labeled by ophthalmologists
using a vertical and non-rotated ellipse. These images are
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Fig. 2. One example from the training set to illustrate how we generate
“ground truth” bounding box with the manual segmentation mask.

equally divided into 325 images for training and 325 images
for testing.

Various evaluation criteria have been applied to OD detec-
tion/segmentation, among which the overlapping ratio is the
most widely used one. Due to space limitation, the proposed
technique is only evaluated based on the overlapping ratio
here. Let R denote the overlapping ratio between the manu-
ally labeled OD region and the estimated one as follows:

R =
AGT ∩AET

AGT ∪AET
(2)

where AGT and AET denote the area of the image region
enclosed by the reference OD boundary (i.e. ground truth)
and the area of the image region enclosed by the OD
boundary determined by a tested method, respectively.
B. Implementation Details

Preprocessing: The manual “ground truth” provided by
the ORIGA dataset is the segmentation masks, while what
we need to train the object detector is the bounding box
for OD. Therefore, we have to preprocess the dataset to
enable training of Faster R-CNN. As mentioned in the
previous subsection, the OD are labeled by vertical ellipse. It
means that we can determine the OD boundary by only four
parameters, i.e., its width w, height h and center location
(xc, yc), as illustrated in Fig. 2 (a). These parameters, on
their own, can then be easily converted into coordinates of
the upper left corner point (x1, y1) and the lower right corner
point (x2, y2) of the bounding box, which is exactly what
we want. But we found that there is another simpler way
to accomplish that which allows us to bypass the tedious
processing of fitting an ellipse first and then converting its
parameters. To enable the bounding box to tightly localize
the labeled OD segmentation mask, we simply let x1 and x2

denote the minimum and maximum horizontal coordinates
of OD mask, and similarly, y1 and y2 denote minimum and
maximum vertical coordinates.

Data augmentation: The training set of ORIGA dataset
contains only 325 images, which is insufficient to learn

TABLE I
OPTIC DISC SEGMENTATION PERFORMANCE COMPARISON OF

DIFFERENT METHODS ON ORIGA DATASET.

Method R(%)
MCV [13] 87.1
ASM [11] 88.7
EHT [12] 89.7
MDM [18] 89.2
SP+ASM [14] 90.5
SDM [19] 91.1
U-Net [20] 88.5
M-Net [1] 92.9
Proposed 93.1

so many parameters of the deep neural networks without
overfitting. The easiest and most common method to reduce
overfitting on image data is to artificially enlarge the dataset
using label-preserving transformations. We employ two ways
to augment our data. The first way is to rotate images by a set
of angles over -10(2)10 degrees, where the notation -10(2)10
stands for a list starting from -10 to 10 with an increment
of 2. Since image rotation also changes the location of OD
in it, we have to modify the “ground truth” bounding box
accordingly. This can be easily accomplished using the same
method as what we do for the original dataset, provided
that the manual segmentation masks are also rotated (as
illustrated in bottom row of Fig. 2). The second way to
augment our data is to use horizontal reflection, on both
the original training set and its rotated counterparts. This
increases the size of our training set by a factor of 20.

Training details: The join-training scheme is adopted to
train the Faster RCNN detection framework. The network
is implemented using Tensorflow based on the publicly
available code provided by Chen et.al. [17]. Several minor re-
visions are made in this implementation, which give potential
improvements. Interested readers may refer to the technical
report [17] for more details about the modifications. We train
and test the proposed method on a single-scale image using
a single model. We rescale the images such that their shorter
side is s = 600 pixels before feeding them to the detector.
VGG-16 [15] is used as the backbone of the Faster R-CNN
and is initialized with an ImageNet pre-trained model. For
anchors, we use 3 scales with box areas of 1282, 2562, and
5122 pixels, and 3 aspect ratios of 1 : 1, 1 : 2, and 2 : 1.
The entire network is fine-tuned end-to-end with a training
set of 7,150 images for 200,000 iterations (about 28 epochs)
on a single NVIDIA TITAN XP GPU. The learning rate is
set to 0.001 at the beginning of the training process and then
changed to 0.0001 after 100,000 iterations.

Testing: The pixels inside the predicted bounding box
are labeled as OD. This region is then used to calculate
the overlapping ratio with the manual ”ground truth” from
ORIGA dataset.

C. Segmentation Results
In Table I, we compare the proposed method with the

modified ChanVese method (MCV) [13], active shape model
(ASM) [11], elliptical Hough transform (EHT) [12], modified
deformable models (MDM) [18], superpixel-based method
with ASM post-processing (SP+ASM) [14], supervised de-



Fig. 3. Sample results. From top to bottom: the cropped original images, the manual “ground truth” and outlines by the proposed method. From left to
right, the overlapping ratios by the proposed method are 98.23%, 98.20%, 98.06%, 77.01%, 75.00% and 73.68%, respectively.

scent method (SDM) [19], and two deep learning based
methods, i.e., U-Net [20] and M-Net [1]. As shown in
Table I, our detection based method achieves state-of-the-
art segmentation results on ORIGA dataset, with the average
overlapping ratio of 93.1% for OD segmentation. Fig. 3
shows some visual examples of the segmentation results,
where the first three columns are images from which the
proposed method obtains the highest overlapping ratios and
the rest columns are lowest ones.

V. CONCLUSION
In this paper, we redefine the optic disc segmentation

problem as an object detection problem, and then propose
a new pipeline to segment OD from retinal fundus images
using Faster R-CNN as the object detector. Tested on the
widely used and publicly available ORIGA dataset, our
method outperforms existing methods, achieving state-of-
the-art OD segmentation accuracy. In the future, we plan
to investigate other deep object detectors and extend the
application to optic cup segmentation as well.
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