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Abstract. Segmentation of the optic disc (OD) and optic cup (OC)
from a retinal fundus image plays an important role for glaucoma screen-
ing and diagnosis. However, most existing methods only focus on pixel-
level representations, and ignore the high level representations. In this
work, we consider the high level concept, i.e., objectness constraint, for
fundus structure analysis. Specifically, we introduce a deep object detec-
tion network to localize OD and OC simultaneously. The end-to-end ar-
chitecture guarantees to learn more discriminative representations. More-
over, data from a similar domain can further contributes to our algorithm
through transfer learning techniques. Experimental results show that our
method achieves state-of-the-art OD and OC segmentation/localization
results on ORIGA dataset. Moreover, the proposed method also obtains
satisfactory glaucoma screening performance with the calculated vertical
cup-to-disc ratio (CDR).

1 Introduction

As the second leading cause of blindness, glaucoma is predicted to affect about
80 million people by 2020 [7]. Since damage to optic nerves cannot be reversed,
early detection of glaucoma is critical in preventing further deterioration. The
vertical cup-to-disc ratio (CDR) is a commonly-used metric for glaucoma screen-
ing. Thus, accurate segmentation of the optic disc (OD) and optic cup (OC) is
essential for developing practical automated glaucoma screening systems. Most
existing methods tackle this challenging problem by using traditional segmenta-
tion techniques like thresholding, edge-based and region-based methods [5] [13].
While these solutions work well with images of healthy retina, they tend to be
misleading in illness cases where retinas suffer from different types of retinal
lesions (e.g., drusen, exudates, hemorrhage, etc.). Alternatively, some methods
based on conventional machine learning pipelines have been proposed [6]. How-
ever, since these approaches rely too heavily on handcrafted features, their ap-
plicability is limited. A promising way to improve the performance is to employ
the deep neural networks (DNN) architectures as they are capable of learning
more discriminating features.
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Fig. 1. Architecture of the proposed method for OD and OC segmentation/localization,
where purple and magenta regions denote OD and OC respectively.

The effectiveness of DNN structure, indeed, has been well demonstrated in
a recent state-of-the-art work termed M-Net [3]. Nevertheless, like most of the
existing algorithms, M-Net is still a pixel-wise classification based approach,
which first classifies each pixel as one of the three classes, i.e., OD, OC and
non-target, and then uses ellipse-fitting to approximate the smooth boundaries
of OD and OC. In fact, the ellipse fitting step can be easily bypassed if OD
and OC are assumed to be in a non-rotated ellipse shape. Therefore, the OD
and OC can be treated as a whole object instead of a bunch of pixels without
objectness constraint, which enables tackling the segmentation task from an
object detection perspective. Follow this basic idea, two typical methods are
presented in literature [14] [12]. Unfortunately, these two methods are initially
developed for OC localization only and not easy to adapt to OD localization.

In this paper, we formulate the OD and OC segmentation as a multiple object
detection problem, with the introduction of the objectness constraints to improve
the accuracy. Different from tradition pixel-wise based two-step approaches, we
propose a simple yet effective method to jointly localize/segment OD and OC in
a retinal fundus image based on deep object detection networks. The proposed
method inherently holds four desirable features: 1) the multi-object network in-
volves the OD and OC relationship and localizes them simultaneously; 2) the
object detection network contains the objectness property, which presents the
high-level discriminate representation; 3) the end-to-end architecture guarantees
learning image features automatically, and also allows for transfer learning to ad-
dress the challenging of small scale data; 4) by simply using Faster R-CNN [8]
as the deep object detector, our method outperforms state-of-the-art OC and/or
OD segmentation/localization methods on ORIGA dataset, and obtains satis-
factory glaucoma screening performances with calculated CDR on ORIGA and
SCES datasets.
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2 Methodology

2.1 Architecture Overview

As shown from Fig. 1, in our detection driven method, the retinal fundus image is
first fed into a deep convolutional network (e.g., ResNet [4]) to produce a shared
feature map at the last convolutional layer (e.g., outputs of the 5th convolution
block in ResNet [4]). Then a sparse set of rectangular candidate object locations
are generated based on the feature map. This stage is commonly known as a
Region Proposal Network (RPN). Then, the proposals are processed by the fully
connected layers (e.g., “fc6” and “fc7” in Faster R-CNN [8]) of the networks
to predict class-specific scores and regressed bounds (e.g., bounding box offset).
For each foreground class (i.e., OD and OC), we keep the bounding box with
the highest confidence score as the final output of the detector.

Provided these two detected bounding boxes, the next stage is how to gen-
erate satisfactory OD and OC boundaries. It is widely accepted by many oph-
thalmologists and researchers that the shape of OD and OC can be well ap-
proximated by a vertical ellipse. Inspired by this concept, we propose to obtain
the OD and OC boundaries by simply redrawing the predicted bounding boxes
as vertical ellipses. The fundus image segmentation problem thus reduces to a
relatively more straightforward localization task in our setting.

2.2 Implementation

In this paper, we adopt Faster R-CNN [8] as the object detector due to its
flexibility and robustness comparing to many follow-up architectures. Faster R-
CNN consists of two stages. During training, the loss for the first stage RPN is
defined as

L({pi, ti}) = β
∑
i

Lcls(pi, p
∗
i ) + γ

∑
i

p∗iLreg(bi, b
∗
i ) (1)

where β, γ are weights balancing localization and classification losses. i is the
index of an anchor in a training mini-batch. pi is the predicted probability of the
ith anchor being OD/OC. The ground truth label p∗i indicates if the overlapping
ratio between the anchor and the manual OD/OC mask is either larger than
an given threshold (e.g., 0.3) or the largest among all anchors. bi is a vector
standing for the 4 coordinates of the predicted bounding box, and b∗i is that
of the ground-truth box associated with a positive anchor (i.e., with p∗i = 1).
The classification loss Lcls is the log loss over target and non-target classes, and
the regression loss is a robust loss function (e.g., the smooth L1 loss). We refer
readers [8] to for the more details of these entries. Meanwhile, the loss function
for the second stage box classifier also takes a similar form of (1) using proposals
produced from the RPN as anchors.

Data augmentation: We employ two distinct forms of data augmentation
in our experiment. The first form is to rotate fundus images from the training
set using a set of angles over -10(2)10 degrees, where the notation N1(∆)N2

represents a list ranging from N1 to N2 with an increment of ∆. We limit the
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(a) Original image

α

(b) Rotated image

Fig. 2. The generated “ground truth” OD and OC bounding boxes for the augmented
image (right) from the original manual segmentation masks (left), where purple and
magenta regions denote OD and OC respectively. The right image is obtained by ro-
tating the whole original fundus image with an angle regarding to its center.

degree of rotation into such a small interval because of the assumption that
the OD and OC are in a vertical ellipse shape. The second form is to generate
image horizontal reflections on both the original training set and its rotated
counterparts. With this transformation operation, a left eye image is artificially
turned into the “right eye” image, and vice versa. This is desirable as we now
have a balanced training set that consists of equal number of images from the
left eye and the right eye. These two augmentation schemes increase the amount
of our training set by a factor of 20.

Training details: To enable training of the deep object detector, we first
need to transform the manual segmentation masks into the “ground truth”
bounding boxes. As illustrated in Fig. 2, this can be simply achieved by finding
a vertical rectangle whose bounds lie exactly on the edge of the provided mask
for each type of targets. Faster R-CNN [8] is implemented using Tensorflow

based on a publicly available code [1].
We train the detection networks on a single-scale image using a single model.

Before feeding images to the detector, we rescale their shorter side to 600 pixels.
A 101-layer ResNet [4] is used as the backbone of Faster R-CNN. For anchors,
we use 5 naive scales with box areas of 322, 642, 1282, 2562, and 5122 pixels, and
3 naive aspect ratios of 1 : 1, 1 : 2, and 2 : 1. Instead of training all parameters
from scratch, we fine-tune the network end-to-end from an ImageNet pre-trained
model on a single NVIDIA TITAN XP GPU. We use a weight decay of 0.0001
and momentum of 0.9 for optimization. We start with a learning rate of 0.001,
divide it by 10 at 100k iterations, and terminate training at 200k iterations.

3 Experimental Results

3.1 OD and OC Segmentation

Following previous work in the literature, we evaluate and compare the OD
and OC segmentation performance on ORIGA dataset [16]. In each image, OD
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(a) Glaucoma images (b) Non-glaucoma images

Fig. 3. The segmentation results of the proposed method, where the purple, cyan and
blue regions denote the manual masks, the segmentation outputs and their overlapping
regions, respectively. From top to bottom rows are images with highest disc overlap-
ping error, lowest disc overlapping error, highest cup overlapping error and lowest cup
overlapping error, for cases with and without glaucoma, respectively. The overlapping
errors from top to bottom rows, left to right are 0.219, 0.021, 0.096, 0.044, 0.247, 0.119,
0.471, 0.038, 0.264, 0.008, 0.045, 0.062, 0.293, 0.175, 0.752, and 0.035, respectively.

and OC are labelled as vertical ellipses by experienced ophthalmologists. These
images are divided into 325 training images (including 73 glaucoma cases) and
325 testing images (including 95 glaucoma cases). We employ two measurements
to evaluate the performance, the overlapping error (E) and the absolute CDR
error (δ) defined as:

E = 1− AGT ∩ASR

AGT ∪ASR
, and δ = |dGT − dSR| (2)

where AGT and ASR denote the areas of the ground truth and segmented mask,
respectively. dGT denotes the manual CDR provided by ophthalmologists, and
dSR denotes the CDR that is calculated by the ratio of vertical cup diameter to
vertical disc diameter from the segmentation results.

We compare the proposed method to the state-of-the-art methods in OD
and OC segmentation, including the relevant-vessel bends method (R-bend) [5],
active shape model (ASM) [15], superpixel-based classification method (SP) [2],
low-rank superpixel representation method (LRR) [11], sliding-window based
method (SW) [14], reconstruction based method (Reconstruction) [12] and three
deep learning based methods, i.e., U-Net [9], M-Net [3] and M-Net with polar
transformation (M-Net + PT). As shown in Table 1, our proposed deep ob-
ject detection based method outperforms all state-of-the-art OD and OC seg-
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Table 1. OD and OC Segmentation Performance Comparison of Different Methods on
ORIGA Dataset.

Method Edisc Ecup δ

R-Bend [5] 0.129 0.395 0.154

ASM [15] 0.148 0.313 0.107

SP [2] 0.102 0.264 0.077

LRR [11] - 0.244 0.078

SW [14] - 0.284 0.096

Reconstruction [12] - 0.225 0.071

U-Net [9] 0.115 0.287 0.102

M-Net [3] 0.083 0.256 0.078

M-Net + PT [3] 0.071 0.230 0.071

Proposed 0.069 0.213 0.067

mentation algorithms on ORIGA dataset in terms of all aforementioned three
evaluation criteria. Fig. 3 shows some visual outputs of our method.

3.2 Glaucoma Screening/Classification based on CDR

Following clinical convention, we evaluate the proposed method for glaucoma
screening by using the calculated CDR value. Generally, the larger CDR value
indicates the higher risk of glaucoma. We train our model using 7,150 images
augmented from ORIGA training set, and then test it on ORIGA testing set
and the whole SCES dataset [3] individually. We evaluate glaucoma screen-
ing/classification performance using the area under Receiver Operating Char-
acteristic curve (AUC). As illustrated in Fig. 4, the AUC values of our method
on ORIGA and SCES are 0.845 and 0.898, respectively, which are slightly lower
than M-Net. Here we justify that: 1) the major objective of this work is to
minimize OD and OC segmentation errors, which are not directly associated to
glaucoma classification accuracy; 2) the state-of-the-art method M-Net [3] has
no significant difference from our proposed method (p >> 0.05 on ORIGA and
p >> 0.05 on SCES using DeLongs test [10]); 3) on the independent test dataset
SCES, our proposed object detection method with objectness constraint achieves
consistent higher sensitivity (i.e., true positive rate) than other two competitive
methods when false positive rate (i.e., 1-Specificity) is lower than 0.2, which
indicates that our approach is promising for practical glaucoma screening.

4 Discussion

To illustrate why the proposed method is more preferable, below we highlight its
main features by comparing it with two most related work in literature. The first
one is the sliding-window based method [14], which first introduces the concept
to segment OC via object detection technique. However, it is only developed
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Fig. 4. Glaucoma screening performance on the ORIGA (left) and SCES (right)
datasets.

for detecting OC after obtaining OD from another individual procedure. Our
method, instead, incorporates these two separate tasks into a joint framework.
Additionally, the sliding window method relies on handcrafted features. In con-
trast, our method learns deep representation directly from data. It should be
pointed out that a fairly large amount of annotated data is usually required for
training a highly accurate deep model, while in practice, such annotated data are
expensive to acquire, especially in the field of medical imaging. One typical way
of addressing a lack of data problem is by using a technique known as transfer
learning and fortunately, this can be easily performed in DNN-based frameworks
including our method. We also highlight that the training takes much longer time
to converge and can hardly get satisfactory results, when the pre-trained model
on ImgaeNet is not used to initialize the networks.

The second work to be compared is M-Net [3], which also trains a DNN
for extracting image features and shares some aforementioned advantages of
our method. To deploy M-Net, besides the end-to-end U-shape segmentation
network, we also require an OD detector for detecting the disc center, a polar
transformation method for mapping the disc image from the Cartesian coordi-
nate system to polar coordinate system, an inverse polar transformation oper-
ation for recovering the segmentation result back to the Cartesian coordinate
system, and an ellipse-fitting for generating smooth boundaries of OD and OC.
In contrast, our method requires only a deep object detector.

5 Conclusion

In this paper, we tackle the fundus image segmentation problem from an ob-
ject detection perspective, based on the circumstance that OD/OC can be well
approximated with vertical ellipse shape. The proposed method is not only con-
ceptually simpler but also easier to deploy comparing to other multi-step based
approaches such as M-Net [3]. Evaluated on the ORIGA dataset, our method out-
performs all existing methods, achieving state-of-the-art segmentation results.
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Moreover, the proposed method also obtains satisfactory glaucoma screening
performance with CDR calculated on the ORIGA and SCES datasets. In the
future, we plan to investigate other deep object detectors and to explore more
diagnostic indicators for glaucoma screening.
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