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Fast Implementation of DeLong’s Algorithm for
Comparing the Areas Under Correlated Receiver

Operating Characteristic Curves
Xu Sun,Weichao Xu∗, Member, IEEE

Abstract—Among algorithms for comparing the areas under
two or more correlated receiver operating characteristic (ROC)
curves, DeLong’s algorithm is perhaps the most widely used
one due to its simplicity of implementation in practice. Unfor-
tunately, however, the time complexity of DeLong’s algorithm is
of quadratic order (the product of sample sizes), thus making it
time-consuming and impractical when the sample sizes are large.
Based on an equivalent relationship between the Heaviside func-
tion and mid-ranks of samples, we improve DeLong’s algorithm
by reducing the order of time complexity from quadratic down
to linearithmic (the product of sample size and its logarithm).
Monte Carlo simulations verify the computational efficiency of
our algorithmic findings in this work.

Index Terms—Area under the curve (AUC), DeLong’s method,
mid-rank, receiver operating characteristic (ROC).

I. INTRODUCTION

ORIGINATED from detection theory developed during
World War II [1]–[4], receiver operating characteris-

tic (ROC) analysis has found a wide use in a number of
fields, including medicine, psychology, bioinformatics, signal
processing, and machine learning, just to name a few [5]–
[9]. Geometrically, ROC curve is a two-dimensional curve
traced out by pairs of false-positive rate and true-positive
rate according to various decision threshold settings. Given
the ROC curve, the area under the curve (AUC) can then
be computed, either analytically or empirically, as a figure
of merit to summarize a diagnostic system’s performance [5],
a binary classifier’s overall accuracy [6], or a detector’s power
of detecting the presence of an unknown signal [7]–[9].

As revealed by Bamber [10], AUC can be estimated by
the Mann-Whitney U statistic (MWUS) [11]. Based on such
relationship, a plenty of nonparametric methods have been pro-
posed in the literature [12]–[16], which formulate algorithms
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directly from the samples without making any parametric
model assumptions on the forms of the parent populations.
For samples drawn from continuous distributions, algorithms
of linearithmic time complexity have been proposed by Xu et
al. for estimating the mean and variance of AUC [17]. Unfortu-
nately, however, sometimes in practice, the samples obey non-
continuous distributions, that is, the probability of ties between
samples are not zero. Under this circumstance, sub-quadratic
estimators for the variance of and covariance between AUCs
are still unavailable to the best of our knowledge. This lack of
efficient algorithms makes AUC comparison computationally
very expensive in scenarios (e.g. bioinformatics) involving
massive data analysis.

Motivated by this unsatisfactory situation, in this work we
improve the popular DeLong’s algorithm [14] by reducing the
time complexity from quadratic down to linearithmic order.
This is accomplished through a relationship we find between
the Heaviside function and the mid-ranks of samples.

The rest part of this paper is organized as follows. Section II
gives the basic definition of AUC as well as some general
notations employed throughout this work. Section III depicts
our linearithmic algorithm after establishing a close relation-
ship between the Heaviside function and mid-ranks associated
with samples. In Section IV, we demonstrate the efficiency of
our improved algorithm in terms of time-complexity by Monte
Carlo experiments. Finally, we summarize our main finding
and draw our conclusion in Section V.

II. DEFINITIONS

For completeness and ease of later development, this section
describes the definition of nonparametric estimator of AUC as
well as DeLong’s formulas for estimating the variance of and
covariance between correlated AUCs.

Let X1, . . . , Xm and Y1, . . . , Yn be two independent and
identically distributed (i.i.d) samples drawn from two popula-
tions (whose distributions can be either continuous or discrete).
Then, based on the relationship between the MWUS and AUC,
the sample version of AUC can be defined as

θ̂ , 1

mn

m∑

i=1

n∑

j=1

H(Xi − Yj) (1)

where

H(t) =





1 t > 0
1
2 t = 0
0 t < 0

(2)
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is the familiar Heaviside function.
Let E(·), V(·) and C(·, ·) denote the mean, variance and

covariance of (between) random variables, respectively. It is
easily seen from (1) that θ̂ is an unbiased estimator of the
corresponding population version θ, since

E(θ̂) = θ , Pr(X > Y ) +
1

2
Pr(X = Y ). (3)

Let

θ̂θθ , {θ̂(1), . . . , θ̂(k)} (4)

be a vector of statistics representing the areas under the ROC
curves derived from different readings X

(r)
1 , . . . , X

(r)
m and

Y
(r)
1 , . . . , Y

(r)
n (1 ≤ r ≤ k) of k different experiments.

For the rth element of the vector, define the “structural
components”

V10(X
(r)
i ) =

1

n

n∑

j=1

H(X(r)
i − Y (r)

j ), i = 1, . . . ,m (5)

and

V01(Y
(r)
j ) =

1

m

m∑

i=1

H(X(r)
i − Y (r)

j ), j = 1, . . . , n. (6)

Also define two matrices SSS10 ,
[
s
(r,s)
10

]
k×k

and SSS01 ,
[
s
(r,s)
01

]
k×k

such that

s
(r,s)
10 =

1

m− 1

m∑

i=1

[
V10(X

(r)
i )− θ̂(r)

] [
V10(X

(s)
i )− θ̂(s)

]

(7)
and

s
(r,s)
01 =

1

n− 1

n∑

j=1

[
V01(Y

(r)
j )− θ̂(r)

] [
V01(Y

(s)
j )− θ̂(s)

]
.

(8)
Then, DeLong et al. [14] proposed a variance-covariance
matrix estimator for the vector θ̂θθ in (4), as

SSS =
1

m
SSS10 +

1

n
SSS01. (9)

When the vector θ̂θθ contains only one element, that is, r = s =
1 in (7) and (8), the covariance estimator in (9) reduces to a
variance estimator V(θ̂).

III. LINEARITHMIC ALGORITHMS

Possessing the time complexities of orders O(mn) and
O[kmn + k2(m + n)], respectively, the algorithm of θ̂ in
(1) and the algorithm of SSS in (9) are both computationally
inefficient, especially when the sample sizes m and n are large.
However, by the relationship of the Heaviside function and
mid-ranks shown in Lemma 1 below, linearithmic algorithms
can be formulated based on DeLong’s formulas (5)–(9).

A. Relationship between mid-ranks and H(·)
Let Z1, . . . ,ZM be a sequence of real numbers. Sorting the

sequence in ascending order yields a new sequence, termed
the order statistics [18]–[23], as

Z(1) = · · · = Z(1)︸ ︷︷ ︸
Block1

< · · · < Z(J) = · · · = Z(J)(= Zi)︸ ︷︷ ︸
BlockJ

< · · · < Z(K) = · · · = Z(K)︸ ︷︷ ︸
BlockK

.
(10)

Suppose that BlockJ , whose elements are all equal to Zi, starts
at position a and ends at position b in the sorted sequence (10).
Then the mid-ranks of Zi’s in the original sequence is defined
as [24]

TZ(Zi) =
1

b− a+ 1

b∑

k=a

k =
a+ b

2
. (11)

Given (11), it then follows that mid-ranks are closed related to
the Heaviside functionH(·), as shown in the following lemma.

Lemma 1: The mid-ranks of Zi’s in Z1, . . . ,ZM can be
computed by

TZ(Zi) =

M∑

j=1

H(Zi −Zj) +
1

2
. (12)

Proof: It suffices to show that the right side of (12) equals
the rightmost term in (11), as

M∑

j=1

H(Zi −Zj) +
1

2
=

a−1∑

k=1

1 +
1

2

b∑

k=a

1 +
1

2
=
a+ b

2
. (13)

Note that from (10) and (11), TZ(Zi), i = 1, . . . ,M , can be
obtained in linearithmic time, i.e., O(M logM), by using the
popular quick sort algorithm [25] (See Fig. 1). The relationship
of (12), while useful for developing efficient algorithms later
on, is not employed to calculate TZ(Zi), i = 1, . . . ,M , due
to its quadratic time complexity.

B. Fast algorithm for computing θ̂

Lemma 2: Denote by Z1, . . . , ZN , N = m + n, the
concatenated sequence of X1, . . . , Xm and Y1, . . . , Yn. Then

n∑

j=1

H(Xi − Yj) = TZ(Xi)− TX(Xi) (14)

m∑

i=1

H(Yj −Xi) = TZ(Yj)− TY (Yj) (15)

Proof: It follows from (12) along with the definition of
the Z-sequence that

TZ(Xi) =

N∑

j=1

H(Xi − Zj) +
1

2

=

m∑

j=1

H(Xi −Xj) +
1

2
︸ ︷︷ ︸

TX(Xi)

+

n∑

j=1

H(Xi − Yj)
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Algorithm 1: Procedure of Calculating Mid-ranks
Data: a sequence Z1, . . . ,ZM

Result: the associated mid-ranks TZ(Z1), . . . ,TZ(ZM )
1 begin
2 M ←− length of Z
3 W ←− sorted version of Z in ascending order
4 I ←− position indices of Z in W
5 W ←− {W,WM + 1}
6 T←− a list of M zeros
7 i←− 1
8 while i ≤M do
9 a←− i

10 j ←− a
11 while Wj =Wa do
12 j ←− j + 1
13 end
14 b←− j − 1
15 for k = a to b do
16 Tk = (a+ b)/2
17 end
18 i←− b+ 1
19 end
20 for i = 1 to M do
21 k ←− Ii
22 TZ(Zk)←− Ti

23 end
24 end

Fig. 1. Fast algorithm for calculating the mid-ranks of a sequence. Note that in
Line ??,W is the ordered Z-sequence in (??); whereas in Line ??, I contains
the position indices of Zi, i = 1, . . . ,M , in W , i.e., Ii = k if Wk = Zi.
Line ?? is to append an extra element WM + 1 (= max(Z) + 1) to W in
order to prevent overflow in Line ??. After Lines ?? to ??, the list T contains
the mid-ranks ofW already. At last, the rest lines complete the rearrangement
of the mid-ranks with respect to the orignial sequence Z1, . . . ,ZM .

TZ(Yj) =
N∑

i=1

H(Yj − Zi) +
1

2

=
n∑

i=1

H(Yj − Yi) +
1

2
︸ ︷︷ ︸

TY (Yj)

+
m∑

i=1

H(Yj −Xi)

which leads to (??) and (??), respectively.
With Lemma ??, it follows readily that θ̂ can be computed

by a linerithmic algorithm, as

θ̂ =
1

mn

m∑

i=1

[TZ(Xi)− TX(Xi)]

=
1

mn

m∑

i=1

TZ(Xi)−
m+ 1

2n
.

(16)

Remark 1: Note that (??) has been mentioned in passing in
Lehmann’s book [?]. We present it here just for completeness
as well as ease of reference in the later part of this paper.

C. Fast Implementation of DeLong’s Algorithm

Theorem 1: The two terms (??) and (??) in DeLong’s
algorithm (??) are numerically equivalent with

V10(X
(r)
i ) =

TZ(r)(X
(r)
i )− TX(r)(X

(r)
i )

n
, i = 1, . . . ,m

(17)
and

V01(Y
(r)
j ) = 1−

TZ(r)(Y
(r)
j )− TY (r)(Y

(r)
j )

m
, j = 1, . . . , n

(18)
respectively.

Proof: Using the relationship H(Xi−Yj) = 1−H(Yj −
Xi) and (??), we have

m∑

i=1

H(Xi − Yj) = m− [TZ(Yj)− TY (Yj)] . (19)

Then the results follow directly by substituting (??) and (??)
into (??) and (??).

Remark 2: Although Theorem ?? is established in the
context of AUC comparison, other methods using similar
statistics as θ̂θθ can also gain benefit from this algorithmic
finding, e.g., the localization ROC analysis [?].

Fig. ?? summarizes the fast implementation of DeLong’s
algorithm based on Theorem ??. Specifically, Lines ?? to ??
purport to obtain θθθ, V10- and V01-terms based on (??), (??)
and (??), respectively; whereas Lines ?? to ?? are to obtain
the matrix SSS based on (??)–(??). It is easily seen that the
improved algorithm is dominated by the mid-ranks algorithm
in Fig. ??, which can be accomplished by the popular quick
sort algorithm. Therefore, the overall time complexity of our
algorithm is of order O[k(m+ n) log(m+ n) + k2(m+ n)],
much lower than the original order of O[kmn + k2(m + n)]
when m and n are large.

IV. NUMERICAL RESULTS

This section demonstrates the computational efficiency of
the mid-ranks-based algorithm established in Theorems ??, by
a Monte Carlo experiment for k = 2, a scenario which is not
only the most fundamental, but also the motivating example for
the research topic of this letter [?]. All samples are generated
by functions in MATLAB Statistics ToolboxTM.

Consider the following hypothetical scenario. We have a
two-class p-dimensional data set {XXX1, . . . ,XXXm,YYY 1, . . . ,YYY n}
based on which two linear classifiers are designed, that is, we
have trained two 1 × p row vectors WWW 1 (by Fisher’s LDA,
say) and WWW 2 (by SVM, say) which will project the original p-
dimensional dataset onto two one-dimensional spaces, respec-
tively. Write X(1)

i ,WWW 1XXXi, Y
(1)
j ,WWW 1YYY j , X(2)

i ,WWW 2XXXi,
Y

(2)
j , WWW 2YYY j , i = 1 . . . ,m and j = 1 . . . , n. Based on

these two one-dimensional data set, two estimators of the
corresponding AUCs, θ̂(1) and θ̂(2), can be computed from
(??). The question is, which classifier is better, or, in terms
of AUC, which one of θ̂(1) and θ̂(2) is greater. To answer
this question, it is natural to investigate the magnitude of the

Fig. 1. Fast algorithm for calculating the mid-ranks of a sequence. Note that
in Line 3,W is the ordered Z-sequence in (10); whereas in Line 4, I contains
the position indices of Zi, i = 1, . . . ,M , in W , i.e., Ii = k if Wk = Zi.
Line 5 is to append an extra element WM + 1 (= max(Z) + 1) to W in
order to prevent overflow in Line 12. After Lines 8 to 19, the list T contains
the mid-ranks ofW already. At last, the rest lines complete the rearrangement
of the mid-ranks with respect to the orignial sequence Z1, . . . ,ZM .

TZ(Yj) =

N∑

i=1

H(Yj − Zi) +
1

2

=

n∑

i=1

H(Yj − Yi) +
1

2
︸ ︷︷ ︸

TY (Yj)

+

m∑

i=1

H(Yj −Xi)

which leads to (14) and (15), respectively.
With Lemma 2, it follows readily that θ̂ can be computed

by a linerithmic algorithm, as

θ̂ =
1

mn

m∑

i=1

[TZ(Xi)− TX(Xi)]

=
1

mn

m∑

i=1

TZ(Xi)−
m+ 1

2n
.

(16)

Remark 1: Note that (16) has been mentioned in passing in
Lehmann’s book [26]. We present it here just for completeness
as well as ease of reference in the later part of this paper.

C. Fast Implementation of DeLong’s Algorithm

Theorem 1: The two terms (5) and (6) in DeLong’s algo-
rithm (9) are numerically equivalent with

V10(X
(r)
i ) =

TZ(r)(X
(r)
i )− TX(r)(X

(r)
i )

n
, i = 1, . . . ,m

(17)
and

V01(Y
(r)
j ) = 1−

TZ(r)(Y
(r)
j )− TY (r)(Y

(r)
j )

m
, j = 1, . . . , n

(18)
respectively.

Proof: Using the relationship H(Xi−Yj) = 1−H(Yj −
Xi) and (15), we have

m∑

i=1

H(Xi − Yj) = m− [TZ(Yj)− TY (Yj)] . (19)

Then the results follow directly by substituting (14) and (19)
into (5) and (6).

Remark 2: Although Theorem 1 is established in the context
of AUC comparison, other methods using similar statistics as
θ̂θθ can also gain benefit from this algorithmic finding, e.g., the
localization ROC analysis [27].

Fig. 2 summarizes the fast implementation of DeLong’s
algorithm based on Theorem 1. Specifically, Lines 4 to 20
purport to obtain θθθ, V10- and V01-terms based on (16), (17)
and (18), respectively; whereas Lines 21 to 33 are to obtain
the matrix SSS based on (7)–(9). It is easily seen that the
improved algorithm is dominated by the mid-ranks algorithm
in Fig. 1, which can be accomplished by the popular quick
sort algorithm. Therefore, the overall time complexity of our
algorithm is of order O[k(m+ n) log(m+ n) + k2(m+ n)],
much lower than the original order of O[kmn + k2(m + n)]
when m and n are large.

IV. NUMERICAL RESULTS

This section demonstrates the computational efficiency of
the mid-ranks-based algorithm established in Theorems 1, by
a Monte Carlo experiment for k = 2, a scenario which is not
only the most fundamental, but also the motivating example for
the research topic of this letter [13]. All samples are generated
by functions in MATLAB Statistics ToolboxTM.

Consider the following hypothetical scenario. We have a
two-class p-dimensional data set {XXX1, . . . ,XXXm,YYY 1, . . . ,YYY n}
based on which two linear classifiers are designed, that is, we
have trained two 1 × p row vectors WWW 1 (by Fisher’s LDA,
say) and WWW 2 (by SVM, say) which will project the original p-
dimensional dataset onto two one-dimensional spaces, respec-
tively. Write X(1)

i ,WWW 1XXXi, Y
(1)
j ,WWW 1YYY j , X(2)

i ,WWW 2XXXi,
Y

(2)
j , WWW 2YYY j , i = 1 . . . ,m and j = 1 . . . , n. Based on

these two one-dimensional data set, two estimators of the
corresponding AUCs, θ̂(1) and θ̂(2), can be computed from
(16). The question is, which classifier is better, or, in terms
of AUC, which one of θ̂(1) and θ̂(2) is greater. To answer
this question, it is natural to investigate the magnitude of the
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Algorithm 2: Improved DeLong’s Algorithm

Data: X(r) ,
{
X

(r)
i

}m
i=1

, Y (r) ,
{
Y

(r)
j

}n
j=1

, 1 ≤ r ≤ k
Result: SSSk×k in (9) and θθθ1×k in (4)

1 begin
2 m←− length of X(1)

1 , . . . , X
(1)
m

3 n←− length of Y (1)
1 , . . . , Y

(1)
n

4 for r = 1 to k do
5 θ(r) ←− 0
6 Z(r) ←− concatenation of X(r) and Y (r)

7 TZ(r) ←− mid-ranks of Z(r) by Algorithm 1
8 TX(r) ←− mid-ranks of X(r) by Algorithm 1
9 TY (r) ←− mid-ranks of Y (r) by Algorithm 1

10 for i = 1 to m do
11 TZ(r)(X

(r)
i )←− TZ(r)(Z

(r)
i )

12 V
(r)
10 (Xi)←− [TZ(r)(X

(r)
i )− TX(r)(X

(r)
i )]/n

13 θ(r) ←− θ(r) + TZ(r)(X
(r)
i )

14 end
15 θ(r) ←− θ(r)/(m× n)− (m+ 1)/(2× n)
16 for j = 1 to n do
17 TZ(r)(Y

(r)
i )←− TZ(r)(Z

(r)
m+j)

18 V
(r)
01 (Yj)←−

1− [TZ(r)(Y
(r)
i )− TY (r)(Y

(r)
j )]/m

19 end
20 end
21 for r = 1 to k do
22 for s = 1 to k do
23 s

(r,s)
10 ←− 0

24 s
(r,s)
01 ←− 0

25 for i = 1 to m do
26 s

(r,s)
10 ←− s(r,s)10 + [V10(X

(r)
i )− θ(r)]×

[V10(X
(s)
i )− θ(s)]

27 end
28 for j = 1 to n do
29 s

(r,s)
01 ←− s(r,s)10 + [V01(Y

(r)
j )− θ(r)]×

[V01(Y
(s)
j )− θ(s)]

30 end
31 SSSr,s ←− s(r,s)10 /(m− 1) + s

(r,s)
01 /(n− 1)

32 end
33 end
34 end

Fig. 2. Fast implementation of DeLong’s algorithm based on Theorem 1.

statistic [13]

z , θ̂(1) − θ̂(2)√
V[θ̂(1) − θ̂(2)]

=
θ̂(1) − θ̂(2)√

V[θ̂(1)] + V[θ̂(2)]− 2C[θ̂(1), θ̂(2)]

where the denominator involves all terms in the matrix SSS
defined by (9). Under the null hypothesis, z can be well
approximated by the standard normal distribution [13]. There-
fore, if the value of z deviates too much from zero, e.g.,
z > 1.96, it is thus reasonable to consider that θ̂(1) > θ̂(2) with
the significance level p < 0.05. When the sample sizes m and
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Fig. 3. Contrast of computational speeds between the conventional covariance
estimator proposed by DeLong et al. using (1), (5) and (6) and our efficient
version proposed in Theorem 1 using (16), (17) and (18). For simplicity, the
sample sizes of X- and Y -class for each experiments are set to be equal,
namely, m = n = 10(10)200. All samples are drawn from bivariate normal
distributions. A logarithmic scale is used for a better visual effect.

n are large, and/or one employs the resampling technique to
test the statistical significance of the z-statistic, it is desirable
to use a faster algorithm, such as the one proposed in this
work, other than the original version of DeLong’s algorithm.

To simulate the scenario mentioned above, we generate two
one-dimensional normal samples, representing those projected
from the high-dimensional space. Specifically,

{
X

(1)
i

}m
i=1

and
{
X

(2)
i

}m
i=1

are i.i.d. samples follow a bivariate nor-
mal distribution N

(
1, 2, 1, 1, 0.8

)
; whereas

{
Y

(1)
j

}n
j=1

and{
Y

(2)
j

}n
j=1

are i.i.d. follow a bivariate normal distribution
N
(
2, 3, 1, 1, 0.8

)
. The notation N

(
µ1, µ2, σ

2
1 , σ

2
2 , ρ
)

stands
for a bivariate norm distribution with means µ1 and µ2, vari-
ances σ2

1 and σ2
2 , and correlation ρ. Note that the parameters

are chosen rather arbitrarily, since they have little if not no
effect on the computational speed comparison.

Fig. 3 contrasts the computational speeds over m = n =
10(10)200 between the original quadratic versions and the
newly developed linearithmc versions for computing SSS, where
m and n denote the sample sizes of X- and Y -class, respec-
tively. The notation 10(10)200 stands for a list starting from
10 to 200 with an increment of 10. Each of the algorithms
is run for 100 times for stability. As shown in Fig. 3, the
linearithmic algorithm proposed in this work does reduce the
time complexity significantly.

V. SUMMARY

In this paper we investigated the problems of comparing
the areas under two or more correlated receiver operating
characteristic curves from nonparametric viewpoints. Our con-
tribution is an improvement of the popular DeLong’s algorithm
in the sense of reducing the time complexity from the original
quadratic order down to the present linearithmic order, based
on an equivalent relationship we find between the Heaviside
function and mid-ranks of samples. These algorithmic findings
might shed new light on the topic of ROC analysis involving
many scientific areas including signal processing.

Fig. 2. Fast implementation of DeLong’s algorithm based on Theorem 1.
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Fig. 3. Contrast of computational speeds between the conventional covariance
estimator proposed by DeLong et al. using (1), (5) and (6) and our efficient
version proposed in Theorem 1 using (16), (17) and (18). For simplicity, the
sample sizes of X- and Y -class for each experiments are set to be equal,
namely, m = n = 10(10)200. All samples are drawn from bivariate normal
distributions. A logarithmic scale is used for a better visual effect.

test the statistical significance of the z-statistic, it is desirable
to use a faster algorithm, such as the one proposed in this
work, other than the original version of DeLong’s algorithm.

To simulate the scenario mentioned above, we generate two
one-dimensional normal samples, representing those projected
from the high-dimensional space. Specifically,

{
X

(1)
i

}m
i=1

and
{
X

(2)
i

}m
i=1

are i.i.d. samples follow a bivariate nor-
mal distribution N

(
1, 2, 1, 1, 0.8

)
; whereas

{
Y

(1)
j

}n
j=1

and{
Y

(2)
j

}n
j=1

are i.i.d. follow a bivariate normal distribution
N
(
2, 3, 1, 1, 0.8

)
. The notation N

(
µ1, µ2, σ

2
1 , σ

2
2 , ρ
)

stands
for a bivariate norm distribution with means µ1 and µ2, vari-
ances σ2

1 and σ2
2 , and correlation ρ. Note that the parameters

are chosen rather arbitrarily, since they have little if not no
effect on the computational speed comparison.

Fig. 3 contrasts the computational speeds over m = n =
10(10)200 between the original quadratic versions and the
newly developed linearithmc versions for computing SSS, where
m and n denote the sample sizes of X- and Y -class, respec-
tively. The notation 10(10)200 stands for a list starting from
10 to 200 with an increment of 10. Each of the algorithms
is run for 100 times for stability. As shown in Fig. 3, the
linearithmic algorithm proposed in this work does reduce the
time complexity significantly.

V. SUMMARY

In this paper we investigated the problems of comparing
the areas under two or more correlated receiver operating
characteristic curves from nonparametric viewpoints. Our con-
tribution is an improvement of the popular DeLong’s algorithm
in the sense of reducing the time complexity from the original
quadratic order down to the present linearithmic order, based
on an equivalent relationship we find between the Heaviside
function and mid-ranks of samples. These algorithmic findings
might shed new light on the topic of ROC analysis involving
many scientific areas including signal processing.
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