
Received April 8, 2019, accepted April 25, 2019, date of publication May 8, 2019, date of current version May 29, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2915642

Fast and Unbiased Estimation of Volume Under
Ordered Three-Class ROC Surface (VUS) Based on
Dynamic Programming
SHUN LIU 1, WEICHAO XU 1, (Member, IEEE), XU SUN2, (Member, IEEE),
AND YUN ZHANG 1
1School of Automation, Guangdong University of Technology, Guangzhou 510006, China
2Baidu, Inc., Beijing 100085, China

Corresponding author: Weichao Xu (wcxu@gdut.edu.cn)

This work was supported by the National Natural Science Foundation of China under Project 61771148 and Project U1501251.

ABSTRACT Receiver operating characteristic (ROC) analysis has been widely used in two-class problems.
However, in practice, three-class problems are frequently encountered, especially in the area of medicine.
To evaluate the performance of three-class classifiers, researchers have proposed the volume under the three-
class ROC surface (VUS) as a figure-of-merit. Unfortunately, to the best of our knowledge, however, all
the existing methods suffer heavy computational loads. In this paper, to overcome such an unsatisfactory
problem, we develop an efficient dynamic programming-based algorithm for unbiased estimation of the VUS
and the corresponding variance. The Monte Carlo simulations verified both the unbiasedness and computing
efficiency of our algorithm compared with the state-of-the-art work proposed by Waegeman and co-authors.

INDEX TERMS Receiver operating characteristic (ROC), volume under the ROC surface (VUS), dynamic
programming, fast algorithm.

NOMENCLATURE
θ Population version of VUS
θ̂ Sample version of VUS
σ̂ 2
θ̂

Unbiased estimation of the variance of θ̂
Fi(·) Cumulative distribution function of Class i
P(·) Probability of occurrence of the event in ( )
E(·) Expectation of random variables
V(·) Variance of random variables
E(·) Number of events satisfying the

relationship in ( )
I(·) Indicator function that returns unity (zero)

when its argument is true (false)
O(·) Big-Oh notation for time complexity
N (µ, σ 2) Normal distribution with mean µ and

variance σ 2

U(a, b) Uniform distribution with parameters a and b
L(µ, σ ) Laplace distribution with parameters µ and σ
R(σ 2) Rayleigh distribution with parameter σ 2

, Means ’is defined as’
n′ , n− 1
n[2] , n(n− 1)
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I. INTRODUCTION
Receiver operating characteristic (ROC) analysis is an indis-
pensable framework in signal detection or medical decision
making, with a major application for characterizing the per-
formance of binary classifications [1]–[4]. In essence, ROC
analysis is a supervised methodology requiring the prior
knowledge of the sample membership (abnormal vs. normal).
Given such knowledge, an ROC curve, which is a plot of
false positive rate against true positive rate (sensitivity), can
be defined according to various decision threshold settings.
The area under the ROC curve (AUC) can then be computed,
either analytical or empirically, as an index to summarize the
overall performance of the binary classifier.

In many scenarios, especially in the area of medicine, the
diagnostic tasks involve three outcomes, namely, abnormali-
ties are two-sided. For example, the heart signal is classified
as Bradycardia (slower rhythm), normal, and Tachycardia
(faster rhythm); and the blood pressure is classified as Hyper-
tension (lower pressure), normal, and Hypertension (higher
pressure). In communication, the amplitudes of transmit-
ted signals fall into three categories, as negative (binary
‘‘0’’), idle (baseline), and positive (binary ‘‘1’’). For such
cases with three ordered alternatives, Scurfield [5] extended
ROC curve and AUC to ROC surface and volume under the
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surface (VUS) in a parallel manner. Following this direc-
tion, other researchers have proposed various methods to
estimate the mean and variance of VUS [6]–[9]. Besides
the above-mentioned methods focusing on one-dimensional
ordered three-class measurements, other techniques for ROC
analysis of high-dimensional data have also been proposed,
includingMossman’s three-waymethod [10], He’s likelihood
ratio based framework [11] and Dreiseitl’s nonparametric
algorithms [12].

From the viewpoint of computation, all the existing meth-
ods are unsatisfactory. In other words, the time complex-
ity of all methods is polynomial, ranging from quintic
order [6]–[8], [11], [12], to quadratic order (the state-of-the-
art) [9]. Moreover, as shown later on in Section V, the esti-
mator for the variance of VUS in [9] is biased, which might
be misleading in practice. Motivated by such unsatisfactory
situation, in this paper, we derive a fast and unbiased esti-
mator for the variance of VUS based on the formulas of
Dreiseitl et al. [12] andNakas andYiannoutsos [6]. Extending
our previous work [13] as well as that of Waegeman et al. [9],
we first reformulate an unbiased estimator, based on [12] and
[6], into a mathematically equivalent recursive structure. We
then apply the well-known dynamic programming technique
[14] that widely used in the literature, such as optimal control
[15], speech recognition [16], communication [17], energy
management in electric bus [18], just to name a few. As
shown in the analysis of time complexity later on, the new
algorithm is capable of reducing the time complexity from a
quintic order down to a linearithmic order, which is the major
contribution of this work.

The rest of this paper is structured as follows. Section II
describes the basic idea of three-class ROC surface. In
Section III, we present the basic definitions of the VUS
as well as the associated unbiased estimators. Section IV
is devoted to developing a linearithmic algorithm based on
dynamic programming. In Section V, numerical experiments
are undertaken to demonstrate the efficiency and unbiased-
ness of our algorithm. Section VI gives a discussion regarding
the extension of our algorithm to multi-class scenarios, where
the class number is greater than three. Finally, we draw our
conclusion in Section VII.

II. ORDERED THREE-CLASS ROC SURFACE
Let {X1i}

n1
i=1, {X2j}

n2
j=1, {X3k}

n3
k=1 be three independent and

identically distributed (i.i.d.) samples drawn from three con-
tinuous populations with cumulative distribution functions
(cdfs hereafter) F1(x), F2(y) and F3(z), respectively. Suppose
that we are going to design a classifier to discriminate the
three classes based on two thresholds th1 = x and th2 = z,
where −∞ < x < z < +∞. As illustrated in Figure 1,
three decision regions are defined by the two thresholds. For
a newly observed value w, a natural criterion is: decide w to
X1, X2, and X3 if w falls in the region of (−∞, x), (x, z), and
(z,+∞), respectively. Write

P1(x, z) , P(X1 < x), (1)

FIGURE 1. Schematic illustration of the double-threshold classifier. The
three probabilities P1,P2 and P3 are defined in (1)–(3), respectively.

P2(x, z) , P(x < X2 < z), (2)

P3(x, z) , P(z < X3). (3)

It is obvious that P1, P2 and P3 are the probabilities
that the classifier correctly classifies each sample to its
true class (Fig. 1). For each pair of (x, z), there exists a
corresponding point (P1,P2,P3) in the three-dimensional
space. With different decision criteria, i.e. x and z, a surface,
called ROC surface, can be described by the simultaneous
equations (1)–(3) (Fig. 2).

III. VOLUME UNDER THE SURFACE
A. DEFINITION OF VUS
As illustrated in Fig. 2, the volume formed by the surface
and the three plenary walls, i.e., the volume under the ROC
surface (VUS), is determined by [19]

θ =

∫ 1

0

∫ 1

0
P2(x, z)dP1(x, z)dP3(x, z) (4)

which can also be interpreted as the probability of the triplet
X3,X2,X1 being in descending order [5], i.e.,

θ = P(X3 > X2 > X1). (5)

Given the probabilistic interpretation (5) above, a natural
sample version can be constructed, as [6], [9]

θ̂ ,
1

n1 n2 n3

n1∑
i=1

n2∑
j=1

n3∑
k=1

I(X3k > X2j > X1i) (6)

where I(·) is the indicator function returning unity (zero)
when its argument is true (false), and n1, n2, n3 are the sample
sizes with respect to three classes.
Remark 1: The sample version θ̂ defined in (6) is an unbi-

ased estimator of θ defined in (5), since, taking expectations
on both sides of (6) and imposing the i.i.d. assumption, we
have

E(θ̂ ) =
1

n1 n2 n3
n1 n2 n3E[I(X3 > X2 > X1)]

=

∫∫∫
x3>x2>x1

dF1(x1)dF2(x2)dF3(x3)

= P(X3 > X2 > X1)

= θ that defined in (5).
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FIGURE 2. Schematic illustration of the geometry of ROC surface. The
three axes correspond to P1, P2 and P3 defined in (1)–(3), respectively.

Remark 2: In [7], the authors compared several nonpara-
metric smoothing methods based on kernel density estima-
tion, for the point estimate of θ defined in (5). Numerical
results suggest that, in terms of unbiasedness, the sample
version of (6) outperform the nonparametric smoothingmeth-
ods. Because unbiasedness is a critical feature for estimators,
we only focus on the statistical properties of θ̂ in (6) through-
out this work.

B. VARIANCE OF θ̂
Given the sample version of (6), it is necessary to estimate its
variance, which is needed to calculate the confidence interval.
In a similar procedure as Dreiseitl et al. [12], it follows that
the variance of θ̂ is

V(θ̂ ) =
1

n1n2n3
×
[
θ (1− θ )

+ (n3 − 1)(q12 − θ2)

+ (n2 − 1)(q13 − θ2)

+ (n1 − 1)(q23 − θ2)

+ (n2 − 1)(n3 − 1)(q1 − θ2)

+ (n1 − 1)(n3 − 1)(q2 − θ2)

+ (n1 − 1)(n2 − 1)(q3 − θ2)
]

(7)

where

q12 = P(X3 > X2 > X1 ∩ X ′3 > X2 > X1) (8)

q13 = P(X3 > X2 > X1 ∩ X3 > X ′2 > X1) (9)

q23 = P(X3 > X2 > X1 ∩ X3 > X2 > X ′1) (10)

q1 = P(X3 > X2 > X1 ∩ X ′3 > X ′2 > X1) (11)

q2 = P(X3 > X2 > X1 ∩ X ′3 > X2 > X ′1) (12)

q3 = P(X3 > X2 > X1 ∩ X3 > X ′2 > X ′1) (13)

with X ′ being an i.i.d. copy of X . Note that the q-terms
above are all probabilities of two three-tuples that are simul-
taneously ordered as indicated by the two inequalities in the
parentheses.

C. UNBIASED ESTIMATOR OF V(θ̂)—SLOW VERSION
Theorem 1: Let θ̂ be defined as in (6) with respect to three

i.i.d. samples {X1i}
n1
i=1, {X2j}

n2
j=1, {X3k}

n3
k=1 drawn from three

continuous distributions, respectively. Let σ 2
θ̂
be a compact

notation of V(θ̂ ). Denote by n′i , ni − 1, i = 1, 2, 3. Then,
an unbiased estimator of V(θ̂ ) in (7), denoted by σ̂ 2

θ̂
, can be

established, as

σ̂ 2
θ̂
=

1
n′1n
′

2n
′

3
[q̂0+n′3(q̂12−θ̂

2)+n′2(q̂13−θ̂
2)+ n′1(q̂23 − θ̂

2)

+n′2n
′

3(q̂1−θ̂
2)+n′1n

′

3(q̂2−θ̂
2)+ n′1n

′

2(q̂3 − θ̂
2)]

(14)

where

q̂0 = θ̂ (1− θ̂ ) (15)

θ̂ =
1

n1n2n3

n1∑
i=1

n2∑
j=1

n3∑
k=1

I(X3k > X2j > X2i) (16)

q̂12 =
1

n1 n2 n3 n′3

n1∑
i=1

n2∑
j=1

n3∑ n3∑
k 6=k ′=1

[
I(X3k > X2j > X1i)

× I(X3k ′ > X2j > X1i)
]

(17)

q̂13 =
1

n1n2 n′2n3

n1∑
i=1

n2∑ n2∑
j 6=j′=1

n3∑
k=1

[
I(X3k > X2j > X1i)

× I(X3k > X2j′ > X1i)
]

(18)

q̂23 =
1

n1 n′1n2n3

n1∑ n1∑
i 6=i′=1

n2∑
j=1

n3∑
k=1

[
I(X1k > X2j > X1i)

× I(X3k > X2j > X1i′ )
]

(19)

q̂1 =
1

n1n2 n′2n3 n
′

3

n1∑
i=1

n2∑ n2∑
j 6=j′=1

n3∑ n3∑
k 6=k ′=1

[I(X3k>X2j>X1i)

× I(X3k ′>X2j′>X1i)] (20)

q̂2 =
1

n1 n′1n2n3 n
′

3

n1∑ n1∑
i 6=i′=1

n2∑
j=1

n3∑ n3∑
k 6=k ′=1

[
I(X3k>X2j>X1i)

× I(X3k ′>X2j>X1i′ )
]

(21)

q̂3 =
1

n1 n′1n2 n
′

2n3

n1∑ n1∑
i 6=i′=1

n2∑ n2∑
j 6=j′=1

n3∑
k=1

[
I(X3k>X2j>X1i)

× I(X3k>X2j′>X1i′ )
]
. (22)

Proof: To show that E(σ̂ 2
θ̂
) = σ 2

θ̂
, it suffices to evaluate

the expectations of the q̂-terms in the numerator of (14). It is
obvious that

E(q̂ζ ) = qζ (23)

where ζ ∈ {12, 13, 23, 1, 2, 3} stands for the subscripts of
q-terms. Applying the relationship of σ 2

θ̂
= E(θ̂2)−θ2 yields

E(θ̂2) = θ2 + σ 2
θ̂
. (24)
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TABLE 1. Quantities needed in the fast algorithm.

Taking expectation of both sides of (14) and using (24),
it follows that

E(q̂0) = θ (1− θ )− σ 2
θ̂

(25)

and

E(q̂ζ − θ̂2) = qζ − θ2 − σ 2
θ̂

(26)

Substituting (25) and (26) into the expectation of (14) along
with some straightforward algebra, we have

E(σ̂ 2
θ̂
) = σ 2

θ̂
,

and the theorem thus follows. �

IV. EFFICIENT ALGORITHM
A. UNBIASED ESTIMATOR OF V(θ̂)—FAST VERSION
It is noteworthy that, although being unbiased, the naive
implementation of the algorithm based on (14)–(22) is com-
putationally very inefficient, especially for large samples, due
to the quintic order, i.e., O[n1n2 n3(n1 n2 + n1n3 + n2 n3)]
of the time complexity. Fortunately, a lineartithmic algorithm
is available after rewriting (17)–(22) in terms of S1–S9 listed
in Table 1. As will be shown later on, these S-terms, which
represent the number of events satisfying the relation inside
respective brackets, can all be computed by dynamic pro-
gramming.
Theorem 2: Let θ̂ be defined as in (6) with respect to three

i.i.d. samples {X1i}
n1
i=1, {X2j}

n2
j=1, {X3k}

n3
k=1 drawn from three

continuous distributions, respectively. Let n′i, i = 1, 2, 3 be
the same as in Theorem 1. Then the estimator σ 2

θ̂
in Theorem 1

is equivalent to

σ̂ 2
θ̂
= ς̂2

θ̂
=

1
n′1n
′

2n
′

3
[θ̂ (1− θ̂ )

+ n′3(Q̂12 − θ̂
2)+ n′2(Q̂13 − θ̂

2)+ n′1(Q̂23 − θ̂
2)

+ n′2n
′

3(Q̂1 − θ̂
2)+ n′1n

′

3(Q̂2 − θ̂
2)+ n′1n

′

2(Q̂3 − θ̂
2)]

(27)

where

θ̂ =
1

n1n2n3

n1∑
i=1

n2∑
j=1

n3∑
k=1

I(X3k > X2j > X1i) =
S1

n1n2n3

(28)

Q̂12 = q̂12 =
2S2

n1n2n3(n3 − 1)
(29)

Q̂13 = q̂13 =
2S3

n1n2(n2 − 1)n3
(30)

Q̂23 = q̂23 =
2S4

n1(n1 − 1)n2n3
(31)

Q̂1 = q̂1 =
4S5 + 2S6

n1n2(n2 − 1)n3(n3 − 1)
(32)

Q̂2 = q̂2 =
4S7

n1(n1 − 1)n2n3(n3 − 1)
(33)

Q̂3 = q̂3 =
4S8 + 2S9

n1(n1 − 1)n2(n2 − 1)n3
. (34)

Proof: For compactness, write n[2] , n(n − 1). Then
from Table 1, it follows readily that

θ̂ =
1

n1n2n3

n1∑
i=1

n2∑
j=1

n3∑
k=1

I(X3k > X2j > X1i)

=
E(X3 > X2 > X1)

n1n2n3
=

S1
n1n2n3

(35)

Q̂12 =
1

n1n2n
[2]
3

n1∑
i=1

n2∑
j=1

n3∑ n3∑
k 6=k ′=1

I(X3k > X2j > X1i)

× I(X3k ′ > X2j > X1i)

=
1

n1n2n
[2]
3

[E(X3 > X ′3 > X2 > X1)

+ E(X ′3 > X3 > X2 > X1)]

=
2S2

n1n2n
[2]
3

(36)
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which are the statements in (28) and (29), respectively. The
results of (30) and (31) can be verified in a similar way.

For Q̂1, it follows that

Q̂1 =
1

n1 n
[2]
2 n[2]3

n1∑
i=1

n2∑ n2∑
j 6=j′=1

n3∑ n3∑
k 6=k ′=1

I(X3k > X2j > X1i)

× I(X3k ′ > X2j′ > X1i)

=
1

n1 n
[2]
2 n[2]3

[E(X3 > X ′3 > X2 > X ′2 > X1)

+ E(X3 > X ′3 > X ′2 > X2 > X1)

+ E(X ′3 > X3 > X2 > X ′2 > X1)

+ E(X ′3 > X3 > X ′2 > X2 > X1)

+ E(X3 > X2 > X ′3 > X ′2 > X1
+ E(X ′3 > X ′2 > X3 > X2 > X1)]

=
4S5 + 2S6

n1n
[2]
2 n[2]3

(37)

which confirms the result in (32). In a similar manner, we also
have the results in (33) and (34), respectively. Hence the
theorem follows. �

B. EFFICIENT COMPUTATIONS OF S1 TO S9 BASED ON
DYNAMIC PROGRAMMING
LetD1, . . . ,DN , N = n1+ n2+ n3, be a combined sequence
of X11, · · · ,X1n1 , X21, · · · ,X2n2 and X31, · · · ,X3n3 . Sorting
this D-sequence in ascending order yields the sequence of
order statistics [20]–[22]

D(1) = · · · = D(1)︸ ︷︷ ︸
Block1

< · · · < D(J ) = · · · = D(J )(= Di)︸ ︷︷ ︸
BlockJ

< · · · < D(K ) = · · · = D(K )︸ ︷︷ ︸
BlockK

. (38)

Suppose that the elements of BlockJ are all equal to Di. Let
ai, bi, and ci be the number of X1’s, X2’s and X3’s equaling
to D(i), respectively, for i = 1, . . . ,K . Then we can obtain
three count vectors CX1 , [a1 . . . aK ], CX2 , [b1 . . . bK ]
and CX3 , [c1 . . . cK ], each is based on the D(i)-sequence
in Eq. (38), which, as shown in Fig. 3, can be obtained in a
linearithmic time, i.e., O[(n1 + n2 + n3) log(n1 + n2 + n3)],
by using some efficient and popular sorting algorithms in the
text book [23]. All the S-terms can be computed via CX1 , CX2
and CX3 in linear time O(K ), where K ≤ n1 + n2 + n3. Next,
we will explain the computing structure by investigating the
definitions of S1 and S8 respectively. The algorithms for the
rest terms can be constructed in a similar and straightforward
manner, thus omitted for brevity.

We start from the computation of S1. From Table 1, the def-
inition of S1 is

S1 = E(X3 > X2 > X1)

=

n1∑
i=1

n2∑
j=1

n3∑
k=1

I(X3k > X2j > X1i)

FIGURE 3. Fast algorithm for computing the three count vectors CX1
, CX2

and CX3
. In Line 3, W is the ordered D-sequence in (38); whereas in

Line 4, L contains the labels of Wi , i = 1, . . . ,n1 + n2 + n3. Specifically,
Li = ’X1’ if Wi comes from X1-class, and Li = ’X2’ and Li = ’X3’ if Wi
and Wi come from X2-class and X3-class respectively. Line 5 appends an
extra element Wm+n+l + 1 (= max(Z) + 1) to W in order to prevent
overflow in Line 14. After Lines 11 to 26, we obtain three lists,
CX1, . . . ,CXk , CY1, . . . ,CYk and CZ1, . . . ,CZk . Finally, in Lines 28 to 30,
the extra (last) elements (due to Line 5) in CX-list, CY-list and CZ-list are
removed and the rest are stored in CX1

, CX2
and CX3

, respectively. It is
noteworthy that the most time consuming procedure is the sorting
operation in Line 3, which can be accomplished by any efficient sorting
algorithms, such as the familiar quick sort and merge sort that are
available in the textbook [23].

=

K∑
k=3

k−1∑
j=2

j−1∑
i=1

ckbjai. (39)

It follows that (39) can be implemented via a dynamic pro-
gramming structure. Specifically, we first construct a 3 × K
count matrixC1 via stacking CX3 (Row1), CX2 (Row2) and CX1
(Row3) aforementioned. We further set C1[1,2] and C1[2,1] to
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FIGURE 4. Diagram for computing S1 defined in (39), where K = 7 is just
for purpose of demonstration.

be 0. Then, as illustrated in Fig. 4, the programming path goes
from the southwest corner towards the northeast corner in a
linear time O(3K ), with the update rule of

C[I ,J ]

=


C[I ,J ] + C[I ,J−1] I = 3, 2≤J≤K − 2
C[I ,J ] · C[I+1,J−1] + C[I ,J−1] I = 2, 2≤J≤K − 1
C[I ,J ] · C[I+1,J−1] + C[I ,J−1] I = 1, 3≤J≤K

(40)

As the indexes I , J running from 3 to 1 and 2 to K respec-
tively, the final desired result is stored in the cell of C1[1,K ].

As to S8 defined in Table 1, it follows that

S8 = E(X3 > X ′3 > X2 > X1 > X ′1)

=

n1∑
i=1

n1∑
j=1

n2∑
k=1

n2∑
o=1

n3∑
p=1

I(X3p>X2o>X2k>X1j>X1i)

=

K∑
p=5

p−1∑
o=4

o−1∑
k=3

k−1∑
j=2

j−1∑
i=1

cpbobkajai. (41)

We need to construct a 5 × K count matrix C8, with Row5
(bottom) being CX1 , Row4 and Row3 both being CX2 , and
Row2 and Row1 (top) both being CX3 . Then, after setting
C8[1,4], C8[2,3], C8[3,2], and C8[4,1] to be 0, the dynamic
programming path goes from the southwest corner towards
the northeast corner in a linear time O(5K ) (Figure 5), with
the update rule of

C[I ,J ]

=



C[I ,J ] + C[I ,J−1] I = 5, 2 ≤ J ≤ K − 4
C[I ,J ] · C[I+1,J−1] + C[I ,J−1] I = 4, 2 ≤ J ≤ K − 3
C[I ,J ] · C[I+1,J−1] + C[I ,J−1] I = 3, 3 ≤ J ≤ K − 2
C[I ,J ] · C[I+1,J−1] + C[I ,J−1] I = 2, 4 ≤ J ≤ K − 1
C[I ,J ] · C[I+1,J−1] + C[I ,J−1] I = 1, 5 ≤ J ≤ K

(42)

When the updating finished, the desired value of S8 in (41) is
stored in the cell C8[1,K ].
The rest S-terms can also be computed in a similar way

with different count matrices all constructed by CX1 , CX2
and CX3 . It follows again from Table 1 that S2–S7 and S9 can

FIGURE 5. Diagram for computing S8 defined in (41), where K = 7 is just
for purpose of demonstration.

be expressed as

S2 =
n1∑
i=1

n2∑
j=1

n3∑
k=1

n3∑
o=1

I(X3o > X3k > X2j > X1i)

=

K∑
o=4

o−1∑
k=3

k−1∑
j=2

j−1∑
i=1

cockbjai (43)

S3 =
n1∑
i=1

n2∑
j=1

n2∑
k=1

n3∑
o=1

I(X3o > X2k > X2j > X1i)

=

K∑
o=4

o−1∑
k=3

k−1∑
j=2

j−1∑
i=1

cobkbjai (44)

S4 =
n1∑
i=1

n1∑
j=1

n2∑
k=1

n3∑
o=1

I(X3o > X2k > X1j > X1i)

=

K∑
o=4

o−1∑
k=3

k−1∑
j=2

j−1∑
i=1

cobkajai (45)

S5 =
n1∑
i=1

n2∑
j=1

n2∑
k=1

n3∑
o=1

n3∑
p=1

I(X3p>X3o>X2k>X2j>X1i)

=

K∑
p=5

p−1∑
o=4

o−1∑
k=3

k−1∑
j=2

j−1∑
i=1

cpcobkbjai (46)

S6 =
n1∑
i=1

n2∑
j=1

n3∑
k=1

n2∑
o=1

n3∑
p=1

I(X3p>X2o>X3k>X2j>X1i)

=

K∑
p=5

p−1∑
o=4

o−1∑
k=3

k−1∑
j=2

j−1∑
i=1

cpbockbjai (47)

S7 =
n1∑
i=1

n1∑
j=1

n2∑
k=1

n3∑
o=1

n3∑
p=1

I(X3p>X3o>X2k>X1j>X1i)

=

K∑
p=5

p−1∑
o=4

o−1∑
k=3

k−1∑
j=2

j−1∑
i=1

cpcobkajai (48)
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S9 =
n1∑
i=1

n2∑
j=1

n1∑
k=1

n2∑
o=1

n3∑
p=1

I(X3p>X2o>X1k>X2j>X1i)

=

K∑
p=5

p−1∑
o=4

o−1∑
k=3

k−1∑
j=2

j−1∑
i=1

cpboakbjai. (49)

Given (39)–(49) that can all be calculated by dynamic pro-
gramming, the slow version (14) of quintic time can thus be
converted into the fast version (27) with a linearithmic time.

V. NUMERICAL RESULTS
This section purports to verify the computational efficiency as
well as the unbiasedness of the dynamic programming based
algorithm (Theorem 2), denoted by VDP in the sequel. The
state-of-the-art algorithm developed by Waegeman et al. [9]
is to be denoted by VWBB. Throughout this section, Monte
Carlo simulations are undertaken for sample sizes from 10 to
200 with an increment of 10. The number of trials is set to be
106 for accuracy. All samples of random variables following
various distributions are generated by functions in Matlab
Statistics ToolboxTM.

A. COMPARISON OF COMPUTATIONAL LOADS
To illustrate the computational efficiency of our pro-
posed algorithm, we generate three one-dimensional nor-
mal samples, with {X1i}

n1
i=1 following the normal distribution

N (0, 0.6), {X2j}
n2
j=1 following N (1, 0.4), and {X3k}

n3
k=1 fol-

lowing N (2, 0.2), respectively. Here the notation N (µ, σ 2)
stands for a normal distribution with meanµ and variance σ 2.
Since the parameters have little effect on the computational
speed, they are chosen rather arbitrarily. Based on the analysis
of Waegeman et al. [9], it follows that the computational
complexity of VWBB is O(8[n1 + n2 + n3]2). On the other
hand, from Theorem 2, the computational complexity of
our algorithm (2) is dominated by the procedure of attain-
ing CX1 , CX2 and CX3 , whose time complexity is linearith-
mic, i.e., O[(n1 + n2 + n3) log(n1 + n2 + n3)]. Since each
dynamic programming procedure for S-terms is in linear
time, the overall time complexity of our algorithm isO[(n1+
n2+n3) log(n1+n2+n3)]. As shown in Fig. 6, the linearith-
mic algorithm VDP proposed in this work does outperform
VWBB in terms of computational efficiency.

B. COMPARISON OF UNBIASEDNESS
In this subsection, we verify the unbiasedness of our algo-
rithm in (27) with samples drawn from four continuous dis-
tributions, including normal, uniform, Laplace, and Rayleigh
distributions. The empirical variance of VUS calculated from
106 Monte Carlo trials is considered to be the ground truth
and denoted by VEmp. It is observed from Figs. 7 to 10 that

1) the results of our algorithm VDP agree well with those
of VEmp, demonstrating its unbiasedness;

2) the results of VWBB deviate from those of VEmp, espe-
cially for small samples;

FIGURE 6. The contrast of computational speeds between the two
algorithms, i.e., VDP and VWBB. For simplicity, here the sample sizes are
set to be equal, namely, n1 = n2 = n3 = 10(10)200. All samples are drawn
from normal distributions with arbitrary parameters since they have little
effect on the computational speed comparison. A logarithmic scale is
used for better visual effect.

3) with increase of sample size, the deviation of VWBB to
VEmp is becoming less and less noticeable, suggesting
that VWBB is only asymptotically unbiased.

VI. DISCUSSION
A. EXTENSION TO K-CLASS CASES—UNBIASED
ESTIMATOR
Thus far we have developed an unbiased estimator of V(θ̂ )
which can be computed in linearithmic time. In this section,
we discuss the scalability of our method to more general
cases, that is when the class number k > 3. we first develop an
unbiased estimator, base on the formulas of Nakas et al. [6],
as

σ 2
θ̂
=

1
n1 · · · nk

[
θ (1− θ )+

k∑
i=1

(ni − 1)(qi − θ )

+

k∑ k∑
i1 6=i2=1

(ni1 − 1)(ni2 − 1)(qi1i2 − θ
2)

+ · · · +

k∑
· · ·

k∑
i1 6=···6=ik−1=1

(ni1 − 1) · · · (nik−1 − 1)

× (qi1i2···ik−1 − θ
2)
]

(50)

where

θ = P(Xk > · · · > X1) (51)

qi = P(Xk > · · · > Xi > · · · > X1
∩Xk > · · · > X ′i > · · · > X1) (52)

qi1i2 = P(Xk>· · ·>Xi1>· · ·>Xi2>· · ·>X1
∩Xk>· · ·>X ′i1>· · ·>X

′
i2 > · · ·>X1)

... (53)
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FIGURE 7. Verification of unbiasedness of the estimator in (27) with normal distribution
N (µ, σ2). For simplicity, here the sample sizes are set to be equal, namely,
n1 = n2 = n3 = 10(10)100. (a) Null case under normal distribution, where both X1, X2 and X3 are
following N (0,1). (b) Non-null case under normal distribution, where X1 follows N (0,1), X2
follows N (1,1), and X3 follows N (2,1), respectively.

FIGURE 8. Verification of unbiasedness of the estimator in (27) with uniform distribution U(a,b).
(a) Null case under uniform distribution, where both X1, X2 and X3 are following U(0,2). For
simplicity, here the sample sizes are set to be equal, namely, n1 = n2 = n3 = 10(10)100. (b)
Non-null case under uniform distribution, where X1 follows U(0,2), X2 follows U(1,3), and X3
follows U(2,4), respectively.

with X ′ being an i.i.d. copy of X . Given (50)–(53) above, an
unbiased estimator can be obtained, as stated in Theorem 3
below.
Theorem 3: Let {X1i1}

n1
i1=1

, {X2i2}
n2
i2=1

, . . . , {Xkik }
nk
ik=1

be k
i.i.d. samples drawn respectively from k continuous popula-
tions. Then E(σ̂ 2

θ̂
) = σ 2

θ̂
, with σ̂ 2

θ̂
being

σ̂ 2
θ̂
=

1
(n1−1) · · · (nk−1)

[
θ̂ (1−θ̂ )+

k∑
i=1

(ni − 1)(q̂i − θ̂ )

+

k∑ k∑
i1 6=i2=1

(ni1 − 1)(ni2 − 1)(q̂i1i2 − θ̂
2)

+ · · ·+

k∑
· · ·

k∑
i1 6=···6=ik−1=1

(ni1−1) · · · (nik−1−1)(q̂i1i2···ik−1−θ̂
2)
]

(54)

where

θ̂ =
1

n1 . . . nk

n1∑
j1=1

· · ·

nk∑
jk=1

I(Xkjk > · · · > X1j1 ) (55)

q̂i =
1

n1 · · · ni(ni − 1) · · · nk

n1∑
j1=1

· · ·

ni∑ ni∑
jı 6=ji=1

· · ·

nk∑
jk=1

×
[
I(Xkjk > · · · > Xiji > · · · > X1j1 )

× I(Xkjk > · · · > Xijı > · · · > X1j1 )
]

(56)

and so on.
Proof: Based on the relationship V(θ̂ ) = E(θ̂2) − θ2,

we have

E(θ̂2) = θ2 + σ 2
θ̂
. (57)

Moreover, due to the i.i.d. assumption, it follows readily that
all q̂-terms above are unbiased estimates of the corresponding
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FIGURE 9. Verification of unbiasedness of the estimator in (27) with Laplace distribution L(µ,b).
(a) Null case under uniform distribution, where both X1, X2 and X3 are following L(0,1). For
simplicity, here the sample sizes are set to be equal, namely, n1 = n2 = n3 = 10(10)100.
(b) Non-null case under uniform distribution, where X1 follows L(0,1), X2 follows L(1,2), and
X3 follows L(2,3), respectively.

FIGURE 10. Verification of unbiasedness of the estimator in (27) with Rayleigh distribution
R(σ2). (a) Null case under uniform distribution, where both X1, X2 and X3 are following R(1).
For simplicity, here the sample sizes are set to be equal, namely, n1 = n2 = n3 = 10(10)100.
(b) Non-null case under uniform distribution, where X1 follows R(1), X2 follows R(2), and X3
follows R(3), respectively.

q-terms in (50)–(53), i.e.,

E(q̂i) = qi (58)

E(q̂i1i2 ) = qi1i2 (59)
...

E(q̂i1···ik−1 ) = qi1···ik−1 . (60)

Taking expectation of both sides of (54) and substituting (50),
(57)–(60) thereafter along with some tedious but straightfor-
ward algebra, we arrive at

E(σ̂ 2
θ̂
)=

σ 2
θ̂

(n1− 1) · · · (nk − 1)

[
− 1−

k∑
i=1

(ni− 1)

−

k∑ k∑
i1 6=i2=1

(ni1− 1)(ni2− 1)

− · · ·−

k∑
· · ·

k∑
i1 6=···6=ik−1=1

(ni1− 1) · · · (nik−1− 1)+ n1 · · · nk
]
.

(61)

For convenience, denote by Tk the quantity inside the brackets
on the right side of (61). Then we only need to show that

Tk = (n1 − 1) · · · (nk − 1) (62)

which can be proved by mathematical induction, as follows.
• Step 1: For k = 2, it is easy to verify that (62) holds true,
since

T2 = −1− [(n1 − 1)+ (n2 − 1)]+ n1n2
= (n1 − 1)(n2 − 1). (63)

• Step 2: Assume that for k = r , both sides of (62) are
equal, that is,

Tr = (n1 − 1) · · · (nr − 1). (64)
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• Step 3: When k = r + 1, we have, from (61),

Tr+1= Tr − (nr+1− 1)− .
r∑
i=1

(nr+1 − 1)(ni − 1)

− −

r∑
i1

· · ·

r∑
ir−2

(nr+1−1)(ni1−1) · · · (nir−2−1)

+n1 · · · nr (nr+1− 1)

−

r+1∑
i1

· · ·

r+1∑
ir

(ni1− 1) · · · (nir− 1)

= Tr + (n1 − 1) · · · (nr − 1)(nr+1− 1)

−(n1− 1) · · · (nr− 1) (65)

which becomes

Tr+1 = (n1 − 1) · · · (nr+1 − 1) (66)

upon substitution of (64) into the last step in (65).
And the theorem thus follows. �

B. EXTENSION TO K-CLASS CASES—TIME COMPLEXITY
ANALYSIS
It follows from Theorem 2 that the proposed algorithm for
three-class problem is in linearithmic time, that is, the time
complexity is of order O(N logN + 9× 5N ), where N is the
sum of sample sizes. For general k-class problems (k > 3),
the time complexity can be expresses as

O[N logN + λ(k)N ] (67)

where λ(k) grows exponentially with increase of k . On the
other hand, the algorithm proposed by Waegeman et al. [9],
has a time complexity of

O(2kN 2). (68)

It follows from a comparison of (67) and (68) that for small
k , the dynamic programming based algorithm runs faster than
the algorithm of Waegeman et al. [9]; whereas for large k ,
the former might underperform the latter. The determination
of the breaking point of k is beyond the scope of this paper
and will be addressed in our future work.

VII. CONCLUSION
In this paper, we have proposed an efficient dynamic-
programming based algorithm for unbiased estimation of the
variance of VUS. Theoretical and empirical results suggest
that (a) our algorithm is in linearithmic time, faster than
the state-of-the-art method developed by Waegeman et al,
which is in quadratic time; and (b) our estimator is unbiased,
compared with Waegeman’s method, which is only asymp-
totically unbiased. Besides these advantages, the structure of
our algorithm can be easily extended to multi-class cases (the
number of class is greater than three) based on the results
in [6]. Moreover, the dynamic programming structure can
be implemented by VLSI circuits [24], [25], which means
that the computational speed could be further accelerated.

The methodology established in this work is believed to
shed new light on the topic of ROC analysis, which is an
indispensable tool in many scientific and engineering areas.
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