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Abstract—Receiver operating characteristic (ROC) analysis
has become an indispensable tool in medical care, with a
major application to characterizing the performance of binary
diagnostic tests in clinical practice. In many circumstances,
however, the diagnostic test has three outcomes, that is, the
abnormalities are two-sided. To deal with this scenario, this
paper develops a recursive algorithm for computing the exact null
distribution of the volume under the ordered three-class receiver
operating characteristic surface (VUS) for samples following
continuous distributions. Based on the asymptotic normality,
an approximately normal distribution with exact mean and
variance is also proposed, which is hoped to be useful for large-
sample scenarios. Moreover, an efficient rank-based formula, in
linearithmic time, is established for nonparametric estimation
of VUS. Monte Carlo simulations verify the usefulness of the
theoretical and algorithmic findings in this work.

Index Terms—Null distribution, Three-class ROC surface,
Volume under the ROC surface (VUS).

I. INTRODUCTION

Originated from the detection theory in early 1950s [1]–[4],
receiver operating characteristic (ROC) analysis has become an
indispensable tool in medical care, with a major application
to characterizing the performance of binary diagnostic tests in
clinical practice [5]. Essentially, ROC analysis is a supervised
methodology requiring the prior knowledge of the sample
membership (positive vs. negative). Given such knowledge,
an ROC curve, which is a plot of false-positive rate against
true-positive rate, can be defined according to various decision
threshold settings [6]–[8]. The area under the curve (AUC)
can then be computed, either analytically or empirically, as a
figure of merit to summarize the overall performance of the
associated binary diagnostic test [5], [9], [10].

In many circumstances, however, the diagnostic test has
three outcomes, i.e., the abnormalities are two-sided. For
instance, the heart signal is, according to the heart rhythm,
classified as Bradycardia (slower rhythm), normal, and Tachy-
cardia (faster rhythm); and the blood pressure, based on the
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readings of hemomanometer, falls into three categories, as Hy-
potension (lower pressure), normal, and Hypertension (higher
pressure). For such cases with three ordered alternatives, ROC
curve and AUC have been extended in parallel to ROC surface
and volume under the surface (VUS) in the literature [11].

Despite the extensive studies concerning VUS in the ordered
three-class case [12]–[17], an important problem, i.e., the exact
null distribution of VUS, remains unaddressed to the best of
our knowledge. The distributional information under the null
assumption is mandatory when performing a hypothesis test,
where false positive probability must be accurately controlled.
Motivated by this unsatisfactory situation, in this work we
focus on the null distribution of VUS. The contribution of
this letter is the development of a recursive algorithm capable
of computing the exact null distribution of VUS.

The rest of this paper is structured as follows. Section
II describes the basic concepts on the volume under three-
class ROC surface (VUS), as well the unbiased estimate
for the variance of VUS. Sections III and IV are devoted
to establishing the exact and approximate null distributions,
respectively. Section V presents numerical results concerning
all the theoretical and algorithmic findings achieved. Finally
in Section VI we draw our conclusion on this work.

II. VOLUME UNDER ROC SURFACE

A. Probabilistic interpretation

Let {Xi}mi=1, {Yi}nj=1 and {Zk}lk=1 be independent and
identically distributed (i.i.d) samples drawn from three uni-
verses with continuous cumulative distribution functions (cdf).
As elaborated in the literature [11], [12], [14], the probability

θ = Pr(X < Y < Z) (1)

can be interpreted as a volume under an ROC surface (VUS)
confined within a unit cube. This expression means that θ is
the probability that the three random variables X , Y and Z
are in ascending order. Then it follows that θ = 1 if, from left
to right, X , Y and Z are completely separable, and θ = 1/6
if X , Y and Z are all overlapped together (the null case).

B. Sample version of θ

From (1), a nonparametric estimator of the VUS can be
constructed, as [12], [14]

θ̂ ,
1

mnl

m∑
i=1

n∑
j=1

l∑
k=1

I(Xi < Yj < Zk) (2)
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where the indicator function I(·) equals unity (zero) if the
relationship inside the bracket is true (false). It is easy to verify
that θ̂ is an unbiased estimator of θ, namely E(θ̂) = θ.

C. Fast computation of θ̂

It is obvious that the time complexity of θ̂ in (2) is of cubic
order O(mnl), which is inefficient when the sample sizes are
large. However, by a similar technique as in our previous work
[9], [10], we can transform (2) into an equivalent form which
possesses a linearithmic time complexity.

We first rewrite (2) as

θ̂ =
1

mnl

m∑
i=1

n∑
j=1

l∑
k=1

H(Yj −Xi)H(Zk − Yj) (3)

where H(t) = 1 for t > 0 and H(t) = 0 for t ≤ 0. Now
we proceed to develop an efficient algorithm based on the
relationship between ranks and H(·). For convenience, write
W1 , {Xi}mi=1 ∪ {Yj}nj=1 and W2 , {Yj}nj=1 ∪ {Zk}lk=1.
Let SY (j) (= ) denote the rank of Yj with respect to the
Y -array, if Yj is the th smallest in the rearranged Y -array
which is sorted in ascending order [18]–[20]. Similarly, we
denote TY (j) and RY (j) as the ranks of Yj in the combined
W1-array and W2-array, respectively. Then, from our previous
work [9], [10], we have

m∑
i=1

H(Yj −Xi) = TY (j)− SY (j), (4)

l∑
k=1

H(Zk − Yj) =
l∑

k=1

[1−H(Yj − Zk)]

= l − [RY (j)− SY (j)] . (5)

A substitution of (4) and (5) into (3) leads readily to

θ̂ =
1

mnl

n∑
j=1

[
TY (j)− SY (j)

][
l − RY (j) + SY (j)

]
. (6)

The most time-consuming operations in (6) are ranking Yj’s
in Y -array, W1-array and W2-array, respectively, which can be
accomplished in linearithmic time. This means that the formula
(6) is much faster than the original version (2), which is in
cubic time O(mnl).

Remark 1. Note that Waegeman et al [14] has developed
another linearithmic algorithm for θ̂ based on dynamic pro-
gramming. See Fig. 1 for the comparison.

III. EXACT NULL DISTRIBUTION OF θ̂

Theorem 1. Under the assumption FX = FY = FZ , the
probability mass function of θ̂ defined in (2) is

Pr
(
θ̂ =

v

mnl

)
=

m!n!l!

(m+ n+ l)!

mn∑
u=0

Sm,n,l(u, v) (7)

where Sm,n,l(u, v) satisfies the following recursive formula

Sm,n,l(u, v) =

Sm−1,n,l(u, v) + Sm,n−1,l(u−m, v) + Sm,n,l−1(u, v − u),
(8)

with u = 0, 1, . . . ,mn and v = 0, 1, . . . ,mnl.

Proof. Let Ωm,n,l denote all strings containing m X’s, n Y ’s
and l Z’s. Then Ωm,n,l can be constructed from three disjoint
and mutually exclusive sets of substrings Ωm−1,n,l, Ωm,n−1,l
and Ωm,n,l−1, as

Ωm,n,l =


Ωm−1,n,l +X

Ωm,n−1,l + Y

Ωm,n,l−1 + Z

. (9)

Let Sm,n,l(u, v) be the number of strings ∈ Ωm,n,l containing
u X < Y pairs and v X < Y < Z triplets. Then the following
three scenarios concerning the values of u and v happen:
S1) For strings ∈ Ωm−1,n,l, appending an X at the rear

changes neither u nor v, that is,

Sm,n,l(u, v) = Sm−1,n,l(u, v); (10)

S2) For strings ∈ Ωm,n−1,l, appending a Y at the rear does
not change v, but increases u by m, that is,

Sm,n,l(u+m, v) = Sm,n−1,l(u, v)

⇒ Sm,n,l(u, v) = Sm,n−1,l(u−m, v); (11)

S3) For strings ∈ Ωm,n,l−1, appending a Z at the rear does
not change u, but increases v by u, that is,

Sm,n,l(u, v + u) = Sm,n,l−1(u, v)

⇒ Sm,n,l(u, v) = Sm,n,l−1(u, v − u). (12)

Combining (9)–(12) gives the formula (8).
Noticing that the total number of strings ∈ Ωm,n,l is

(m + n + l)!, and the number of strings ∈ Ωm,n,l producing
Sm,n,l(u, v) is m!n!l!, we finally obtain (7) by summing out
the auxiliary term u.

Remark 2. The null distribution of θ̂ determined by (7)
depends only on the sample sizes m, n and l, other than the
functional form F of the parent distribution. In other words,
θ̂ is distribution-free under the null case.

Algorithm 1: Calculation of Sm,n,l(u, v)

Data: m,n, l, u, v
Result: Sm,n,l(u, v)

1 begin
2 if m = n = l = u = v = 0 then
3 return 1
4 end
5 if m < 0 or n < 0 or n < 0 then
6 return 0
7 end
8 if u /∈ [0,mn] or v /∈ [0,mnl] then
9 return 0

10 end
11 return Sm−1,n,l(u, v) + Sm,n−1,l(u−m, v) +

Sm,n,l−1(u, v − u)
12 end

Based on Theorem 1, a recursive algorithm for computing
Sm,n,l(u, v) follows readily, as shown in Algorithm 1 above,
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with some necessary stopping rules contained in Lines 1 to
10. The pmf of θ̂ can then be obtained upon substitution of
Sm,n,l(u, v) based on Algorithm 1 in (7).

Remark 3. Despite its simplicity for implementation, Al-
gorithm 1 has a time complexity of exponential order
O
(
3m+n+lm2n2l

)
, which makes it soon become computa-

tionally intractable, even for sample sizes as small as 10.
Computational cost can be reduced if the intermediate results
are restored on the disk for later reuse. After such procedure,
the time-complexity can be reduced to a polynomial order of
O(m3n3l2). 1

IV. APPROXIMATE NULL DISTRIBUTION OF θ̂

Thus far we have, on a theoretical and algorithmic level,
solved the problem of computing the exact null distribution
of θ̂ based on Theorem 1 and Algorithm 1, respectively.
However, as remarked before, the recursive algorithm is com-
putationally very inefficient, even with the improvement just
mentioned. For large samples, we have to resort to other
methods. Fortunately, it follows that, in the null case, i.e.,
FX = FY = FZ , θ̂ converges in distribution to a normal
distribution with E(θ̂) = 1/6 and variance V(θ̂) depending
only on the sample sizes [21]. Then, for large samples, we
only need to focus on the variance of θ̂, which is [21]

σ2
null =

1

180

1

mnl

(
4+5m+5l+2n+4mn+4nl+ml

)
. (13)

Proof. Let X ′, Y ′ and Z ′ be i.i.d. copies of X , Y and Z,
respectively. Since in the null case, X , Y , Z, X ′, Y ′ and Z ′

are i.i.d., we have, based on the formulas in [12],

V(θ̂) =
1

mnl

[
θ(1− θ) + (l − 1)(q12 − θ2)

+ (n− 1)(q13 − θ2) + (m− 1)(q23 − θ2)

+ (n− 1)(l − 1)(q1 − θ2)

+ (m− 1)(l − 1)(q2 − θ2)

+ (m− 1)(n− 1)(q3 − θ2)
]

(14)

where
θ = Pr(X < Y < Z) =

1

3!
=

1

6
(15)

q12 = Pr(X < Y < Z ∩X < Y < Z ′) =
2

4!
=

1

12
(16)

q13 = Pr(X < Y < Z ∩X < Y ′ < Z) =
2

4!
=

1

12
(17)

q23 = Pr(X < Y < Z ∩X ′ < Y < Z) =
2

4!
=

1

12
(18)

q1 = Pr(X < Y < Z ∩X < Y ′ < Z ′) =
6

5!
=

1

20
(19)

q2 = Pr(X < Y < Z ∩X ′ < Y < Z ′) =
4

5!
=

1

30
(20)

q3 = Pr(X < Y < Z ∩X ′ < Y ′ < Z) =
6

5!
=

1

20
(21)

1The authors have computed the exact pmfs for sample sizes up to m =
n = l = 20, and listed into a table the decision thresholds corresponding to
various p-values. However, due to its large size (90 pages), the table is not
allowed to be provided in the supplemental material. This table is available
to interested readers upon request.
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Fig. 1. Comparative results of CPU time between the algorithms of slow
version in (2), Waegeman et al. in [14] and rank-based version in (6). A log
scale is used for better visual effect.

0 0.2 0.4 0.6 0.8 1

(a) m = 4, n = 4, l = 4

Simulation
Exact

0 0.2 0.4 0.6 0.8 1

(b) m = 4, n = 8, l = 8

Simulation
Exact

0 0.2 0.4 0.6 0.8 1
θ

(c) m = 8, n = 4, l = 8

Simulation
Exact

0 0.2 0.4 0.6 0.8 1
θ

(d) m = 10, n = 10, l = 10

Simulation
Exact

Fig. 2. Exact null distributions calculated based on Theorem 1 and Algorithm
1. For purpose of verification, the exact results are superimposed on empirical
histograms from Monte Carlo simulations. Perfect agreements are observed
between the exact and simulation results.

which leads readily to (13) upon substitution of (15)–(21) into
(14) with some tidying up.

From the result (14) just established, we can assume the null
distribution follows approximately the normal distribution

θ̂ ∼ N
(

1

6
, σ2

null

)
(22)

when the sample sizes m,n, l are large.

V. NUMERIC RESULTS

This section presents numeric results concerning all the
theoretical and algorithmic achievements established in the
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previous sections. Results with respect to Algorithm 1 are
obtained by C++ language; while others are obtained in Matlab
environment on a personal computer. Since the null distribu-
tion of θ̂ is distribution free, the distributions of X , Y and Z
are all set to be standard normal N (0, 1) for convenience in
this work. All samples are generated by functions in Matlab
Statistics ToolboxTM. For reason of accuracy, the number
of Monte Carlo trials are all set to be 104.

A. Fast computation of θ̂

Fig. 1 compares the computational loads between the two
sample versions of θ̂ in (2) and (6), and the dynamic program-
ming based algorithm in [14]. For simplicity, the sample sizes
of the three classes are set to be identical. It is seen that when
the sample size is small, the CPU time of all three versions
is comparable. However, with an increase of the sample sizes,
the computational time of (2) soars up rapidly, suggesting
its inferiority in terms of computational load. Moreover, our
rank-based algorithm runs a little bit faster than that in [14].
However, since the difference is so tiny, we do not consider
the advantage of our method significant.

B. Exact null distribution for small samples

The exact null distributions of θ̂ along with empirical
histograms (background) with respect to different sample sizes
are plotted in Fig. 2. The foreground parts of all four subplots
are obtained based on our recursive Algorithm 1. It is obvious
that, when the sample sizes are small, the exact null distribu-
tion is far from normal. Specifically, the null distribution is
significantly skewed towards the right. Therefore, the normal
approximation cannot be used in these scenarios, especially
for samples sizes ≤ 10.

C. Goodness of normal approximation

Fig. 3 compares the null distribution based on Monte
Carlo simulation with the normal approximate version (22)
when the sample sizes are relatively large (m = n = l =
20, and 50, respectively). It is seen that, for sample sizes
≥ 20, the null distribution can be well approximated by
the normal distribution established in (22), although deviation
from normal distribution is still noticeable in Fig. 3 (a).

D. A real example

Before concluding this section, we demonstrate the useful-
ness of the recursive algorithm developed in this work based
on a textbook example [22], which concerns the relationship
between sleep deprivation and aggressive behavior. Table I
lists the data collected from three groups (each of size 3) on
the relationship between the hours of sleep deprivation and
the aggression scores assigned by experts [22]. As shown in
Table I, there are ties in the data (three 6’s), which violates
the requirement of continuity of data’s parent distribution. To
solve this problem, i.e., to break the ties, we added a zero-
mean Gaussian noise with a tiny variance (10−4 in this work),
which is a tie-breaking technique suggested in [23]. After this
preprocessing, the distribution of our data becomes continuous.

0 0.1 0.2 0.3 0.4 0.5

θ̂

(a) m = n = l = 20

Monte Carlo Simulation
Normal Approximation (22)

0 0.1 0.2 0.3 0.4 0.5

θ

(b) m = n = l = 50

Monte Carlo Simulation
Normal Approximation (22)

Fig. 3. Illustration of the convergence of θ̂ to normal distribution when the
sample sizes are relatively large (m = n = l = 20, 50 in this case). Good
agreement between simulation and normal approximation can be observed.

TABLE I
AGGRESSION SCORES WITH RESPECT TO TIME OF SLEEP DEPRIVATION

0 hour 24 hour 48 hour

X1 = 0 Y1 = 3 Z1 = 6
X2 = 4 Y2 = 6 Z2 = 8
X3 = 2 Y3 = 6 Z3 = 10

Then, by (2) along with Theorem 1 and Algorithm 1, we obtain
θ̂ = 0.7778 and the associated p-value being 0.0048 (under
the right-tailed test), which is less than 0.05. Therefore, from
the point of hypothesis test, the null hypothesis that sleep
deprivation affects no aggressive behavior must be rejected,
at the significance level of 0.05.

VI. CONCLUSION

This paper proposes a recursive algorithm for computing
the exact null distribution of VUS with respect to ordered
three-class ROC analysis with continuous measurements. An
approximate null distribution with exact mean and variance
was also presented, which can be employed when the sample
sizes are large. Moreover, an efficient rank-based formula for
nonparametric estimation of VUS was established which has a
linearithmic time complexity. Simulation studies suggest that:
1) for sample sizes below 10, the null distribution is far from
normal. This means that one has to resort to the recursive
algorithm to obtain the exact null distribution, in order to
accurately control the false positive probability in hypothesis
test, 2) it would be safe to use the normal approximation when
the sample sizes are over 20, and 3) for sample sizes within 10
to 20, other methodology, such as resampling based one, might
be more suitable due to the excessive computational load of
the recursive Algorithm 1 (but see the footnote in Remark 3).
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