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Abstract—This paper proposes a robust adaptive noise can-
celler (RANC) for removing power line interference (PLI) from
the Electroencephalogram (EEG) when both the input and
desired signals of the ANC are contaminated by spike or
impulsive noise. It is based on the least mean M-estimate (LMM)
and normalized least mean M-estimate (NLMM) algorithms,
which offer improved robustness to impulsive noises over conven-
tional least mean squares methods. Methods for inpainting the
corrupted EEG signals are also developed. Simulation results
using the MIT-BIH Polysomnographic Database show that the
proposed methods is effective in combating impulsive or spike
noise in adaptive cancelling of PLI in EEG signals and similar
applications.

Index Terms—Power Line Interference; Electroencephalo-
gram; Impulsive Noise; Adaptive Filters, Robust Adaptive noise
canceller, LMM and NLMM algorithms

I. INTRODUCTION

An Electroencephalogram (EEG) is the electrical recording
of brain activity, which has been widely used for clinical
diagnosis, brain-computer interaction, and event-related poten-
tials (ERP) analysis [1], etc. An important issue in processing
EEG is its low signal level and the presence of undesirable
artifacts. In particular, EEG signals may be contaminated by a
variety of artifacts such as Electrooculography (EOG), Elec-
tromyography (EMG), and power line interference (PLI) [2].
In particular, PLI is one of the most common types of
artifacts in EEG signal, which is caused by the electromagnetic
coupling from power lines. These undesirable artifacts should
be suppressed to allow proper analysis and diagnosis to be
performed. A number of techniques have been developed to
suppress these artifacts from EEG simultaneously. Generally,
they can be divided into two main approaches: 1) wavelet
method, and 2) blind-source separation (BSS) method. The
wavelet-based artifacts elimination algorithms [3] [4] assume
that the statistical characteristics between the artifacts and
EEG signals are very different in frequency domain so that
the undesirable frequency components can be thresholded. On
the other hand, BSS-based approaches [5]–[7] usually require
off-line processing. In the context of PLI, notch filters (NF) [8]
have been proposed to suppress its adverse effect. However it
usually causes distortion of the frequency spectrum. Adaptive
filtering, which automatically adjust its parameters, offers
a good alternative for EEG artifacts suppression [9] [10],

especially for PLI cancellation (PLIC). In [11], the authors
proposed a least mean squares (LMS) algorithm-based adap-
tive filter to suppress PLI. However, in many circumstances,
the observation of the EEG signal may also be corrupted
with spike or impulsive noise. This may cause adverse effect
on conventional least square-based adaptive filters leading to
performance degradation.

To mitigate this problem, we propose a robust statistical
approach to the adaptive noise canceller (ANC) problem
for eliminating PLI in EEG signals with both its reference
and input signals contaminated by spike or impulsive noise.
A copy of the power line interference is assumed to be
available and is used as the input to an adaptive filter to
suppress the interference in the desired signal (i.e. the signal
where the interference is to be suppressed). The conventional
LMM or NLMM adaptive filter is used to safeguard the
estimated system parameters from the adverse influence of
the impulsive components. In particular, the input impulses
are detected and suppressed by modelling the input as a low
order autoregressive (AR) model, which is estimated again
by the LMM or NLMM algorithms [12]–[14]. The difference
between the desired signal and the output of the adaptive filter,
i.e. the estimation error, of the ANC thus yields the signal
to be estimated. Since the estimation error may be corrupted
by impulsive noise, the corrupted error signal needs to be
inpainted, which can be performed with the help of an AR
model or simpler procedure such as a recursive median filter.

The proposed methods were evaluated by computer sim-
ulation using the MIT-BIH Polysomnographic Database. Ex-
perimental results show that the proposed method offers im-
proved robustness over conventional ANCs using the least
mean square criterion under impulsive noise environment.
The rest of the paper is organized as follows. The proposed
method is introduced in Section II. Computer simulation and
performance comparison of the proposed method and other
conventional algorithms are evaluated in Section III. Finally,
conclusion is drawn in Section IV.

II. MODEL AND METHOD

A. System Model

Fig. 1 shows the structure of the proposed robust adap-
tive noise canceller (ANC). A corrupted copy of the PLI
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Fig. 1. Structure of Robust Adaptive Noise Canceller (ANC)

x0(n) is assumed to be available and it is used as the input
x(n) to an adaptive filter. The corruption is assumed to be
an additive noise ξ with impulsive characteristics, which is
modeled as a contaminated Gaussian noise. The EEG signal
s0(n) is assumed to be corrupted by an additive contaminated
Gaussian noise η(n) and a PLI y0(n) , which is obtained by
passing x0(n) through an unknown finite duration impulse
response (FIR) system with impulse response coefficients
W0 = [w∗1 , w

∗
2 , . . . , w

∗
L0
]T. The measured signal d(n) is fed to

the desired input of the adaptive filter. The adaptive filter is as-
sumed to be a FIR filter W (n) = [w1(n), w2(n), . . . , wL(n)]

T

with length L and it aims to minimize the error between its
output y(n) and d(n) according to certain criterion. Since
the EEG signal is uncorrelated with the input x(n), the
minimization will force the adaptive filter to approximate W0

so as to cancel out the interference at d(n).
Mathematically, the input signal x(n) to the adaptive filter

and the desired signal d(n) are given by

x(n) = x0(n) + ξ(n), (1)

d(n) = W0
TX0(n) + s0(n) + η(n), (2)

where X0(n) = [x0(n), x0(n− 1), . . . , x0(n−L0 +1)]T. On
the other hand, the output of the adaptive filter is given by

y(n) = W T(n)X(n), (3)

where W (n) and X(n) = [x(n), x(n−1), . . . , x(n−L+1)]T

are respectively the weight vector of the adaptive filter and the
input signal vector at time instant n. The PLI is assumed to
be a sinusoidal signal with frequency of f , which is usually
50 or 60 Hz depending on geographic location:

x0(n) = A cos(2πfn/fs + ϕ), (4)

where A, f and ϕ are respectively the amplitude, frequency
and phase of the sinusoidal PLI and fs is the sampling
frequency.

B. Robust Adaptive Noise Canceller (RANC)

The optimal weight vector of conventional adaptive filters
is obtained by minimizing the mean squares error (MSE)
criterion

E[e2(n)] (5)

where e(n) = d(n) − y(n) = d(n) − W T(n)X(n). In the
LMS algorithm, the weight vector is recursively updated in

the negative direction of the instantaneous gradient of the MSE
with respect to the weight vector −2e(n)X(n), which yields

W (n+ 1) = W (n) + µe(n)X(n), (6)

where the constant µ is the step size which controls the con-
vergence rate and steady state error. In the NLMS algorithm,
the step size is normalized by the energy of the input vector so
that the step size will not be too sensitive to the input signal
power

W (n+ 1) = W (n) +
µe(n)X(n)

ε+XT(n)X(n)
, (7)

where ε is a small positive parameter to avoid division by
zero. In order to ensure convergence, the step size µ should
be chosen in the range 0 < µ < 2. It has been shown that the
least squares criterion is very sensitive to impulsive noise [12]–
[14] and the performance will deteriorate significantly. A more
robust approach is to employ the LMM and NLMM algorithms
which minimize the robust M-estimation function such as the
modified Huber (MH) function

ρ
MH

(e(n)) =

{
e2(n)/2, 0 ≤ e(n) ≤ ζ

ζ2/2, otherwise
, (8)

where ζ is the threshold parameter used to suppress the effect
of impulsive noise, which can be adaptive updated. More
sophisticated M-estimate function such as the Hampel’s three
parts redescending functions can also be used. Consequently,
the weight update of the NLMM algorithm is given by

W (n+ 1) = W (n) +
µψ

MH
(e(n))X(n)

ε+XT (n)X(n)
, (9)

where ψ
MH

(e(n)) is the score function and for the MH
function, it reads

ψ
MH

(e(n)) =

{
e(n), 0 ≤ e(n) ≤ ζ

0, otherwise
. (10)

In the Adaptive Threshold Selection (ATS) method, the
threshold ζ is updated as

ζ = kζ σ̃e(n), (11)

where kζ is a constant used to control the degree of suppres-
sion of impulsive noise and

σ̃2
e(n) = λeσ̃

2
e(n− 1) + c1(1− λe)med(Ae2(n)), (12)

is a robust estimate of impulse-free variance. Here, 0 < λe < 1
is a forgetting factor, c1 is the correction factor for median
estimation, Ae2(n) = [e2(n), . . . , e2(n−Ne + 1)] and Ne is
the window length. The median filter helps to suppress outliers
in the error signals and its length Ne controls the consecutive
impulses that can be suppressed. Usually Ne is chosen in the
range 5 to 15, which can suppress 2 to 7 consecutive impulses
respectively.

While the LMM and NLMM are effective in suppressing
impulses in the desired signal, special care has to be taken
to suppress the adverse effect due to input impulses. A usual



approach is to construct a low order AR model for the input
using say another LMM, NLMM or RLM algorithms [12]–
[14]. The desired signal d̃(n) can be chosen as x(n) with
input X̃(n) = [x(n − 1), . . . , x(n − L′ + 1)]T and output
ỹ(n) = W̃

T
(n)X̃(n). The prediction error

ẽ(n) = d̃(n)− ỹ(n), (13)

can be used to detect the presence of impulses in x(n) by
checking its score function as in (9) and (10). Once an impulse
is detected, the corrupted samples are replaced by the linear
predicted value ỹ(n). This helps to suppress the adverse effect
of input impulses to the ANC.

Different from robust channel estimation, the robust ANC
aims to suppress the interference and extract the signal of
interest, the EEG signal in our case, from the error signal
e(n). When the score function is equal to zero, it is very
likely that the corresponding error signal is corrupted by an
impulse occurring at the desired signal. Therefore, one needs
to inpaint the corresponding values of e(n), instead of using
this corrupted value. This can be done by constructing a low
order AR model from the estimated signal of interest and use
the linear predicted value instead of the corrupted value. This
can be viewed as a cleaning operation which shares much
similarity in suppressing the input impulses to the robust ANC.
Alternatively, one can use a recursive median filter to inpaint
the corrupted samples as follows

ê(n) = λ′eê(n− 1) + (1− λ′e)med(Ae(n)), (14)

where λ′e is a positive smoothing factor less than one, med(·) is
the median filter operator Ae(n) = [e(n), . . . , e(n−N ′e+1)],
and N ′e is the length of the median filter. In our simulation
experiments, the performance of the simple recursive median
filter in (14) is found to be satisfactory.

III. EXPERIMENTAL RESULTS

To illustrate the effectiveness of the proposed robust ANC,
computer simulations are performed using real EEG signals in
the MIT-BIH Polysomnographic Database as the ground truth.
Due to page limitation, we only show the results from patient
41 since other records give similar results.

A. Experimental Setting

The power line frequency was chosen as 50 Hz and its
amplitude was selected as 0.5R where R is the root mean
square of the EEG signals. For illustrative purpose, the param-
eters of the unknown system W0 was set to be [1, 0.5, 0.25].
For simplification, we assumed the order of the FIR model is
known as a priori, that is, L = 3. The additive noise ξ and η
were both modeled as zero mean contaminated Gaussian (CG)
processes

ξ ∼ (1− τ)N(0, σ2
ξ1) + τN(0, σ2

ξ2), (15)

η ∼ (1− τ)N(0, σ2
η1) + τN(0, σ2

η2), (16)

with the impulse occurrence probability chosen as τ = 0.005.
N(µ0, σ

2
0) denotes a univariate Gaussian process with mean µ0

Fig. 2. (a) Real EEG signals and its noisy observations; (b) Noise-free power
line signals and its noisy observations. In red: Noise-free signals. In blue:
Noisy observations.

and variance σ2
0 , and the variance of the various components

are chosen as σ2
ξ1

= 0.1R, σ2
ξ2

= 15R, σ2
η1 = 0, σ2

η2 = 15R.
Fig. 2 shows the original EEG signal and the noise-free power
line signals in comparison with their noisy counterparts.

The step size for the LMS and LMM was chosen as
1/(0.05L), while the step size for the NLMS and NLMM
was selected as 1/(50L). The rest of the parameters were set
as follows: fs = 250, ϕ = 0, λe = λ′e = 0.99, Ne = N ′e = 7,
ε = 10−16, c1 = 2.13 and kξ = 3.576. It should be noted
that a relative large kξ is selected to avoid falsely detecting
impulsive noise due to EEG fluctuations.

B. Effects of Impulsive Noise

To illustrate the adverse effect of impulsive noise to conven-
tional least squares-based ANC, the differences between the
real- and the estimated EEG signals for various methods in a
single trial are presented in Fig. 3. We can observe that: 1) the
NLMM and LMM have comparable performance except that
the NLMM converges much faster than the LMM algorithm, 2)
LMM and NLMM produce significantly lower error than the
LMS and NLMS during the occurrence of the impulsive noise,
and 3) NLMS recovers faster than the LMS after corruption
by the impulses. To illustrate the effectiveness of the LMM
and NLMM algorithms in detecting the impulses, we plot in
Fig. 4 the noisy input and desired signals for the above trial.
Whenever an impulsive noise is detected, a red line is drawn
at the corresponding time location.

It can be seen that both LMM and NLMM can effectively
detect the impulsive noise, either in the input signals or in the
desired signals.

C. SNR Comparison

To further evaluate the performance of our proposed LMM
and NLMM-based ANC for PLIC, they are further compared



TABLE I
COMPARISON RESULTS UNDER DIFFERENT NOISE LEVEL

Noise Level(dB) SNR (dB) using different methods
Reference

Signal
EEG

Observation NF [8] LMS NLMS LMM NLMM

-23.68 -0.01 0.05 -0.56 -4.77 21.47 14.02
-9.70 -0.61 0.05 -0.87 -2.95 16.62 15.81
-3.68 -2.12 0.04 -2.75 -3.02 16.15 16.95

Fig. 3. Errors between the real EEG signals and the filtered outputs given
by different methods: (red): LMS, (blue): NLMS, (green): LMM, (yellow):
NLMM. (a) Enlarged result from 0-4s; (b) Enlarged result from 38s-40s.

Fig. 4. Detection of the additive spike noise. (a) LMM; (b) NLMM. In red:
Spike noise detected. In green: Noisy observations of the power line signal.
In blue: Noisy observations of the EEG signal.

with other conventional algorithms such as NF [8], LMS,
and NLMS. The experimental results were averaged over 100
Monte Carlo runs, and signal-to-noise ratio (SNR) was used as
the quality measure metric. The notch of the NF was located
at 50 Hz with the Q-factor being set to 60. The noise levels
at the input signal (PLI with white and spike noise) and EEG

observation (EEG with PLI and spike noise) were shown in
Table I with different amplitude levels of PLI, namely 0.1R,
0.5R and R. It can be seen from Table I that the proposed
LMM and NLMM-based ANCs perform better than other
compared algorithms due to their improved robustness against
impulsive noise.

IV. CONCLUSION

A novel robust adaptive noise canceller for suppressing PLI
corrupted by impulsive outliers has been proposed. It is based
on the LMM and NLMM and a novel method for inpainting
the corrupted EEG samples. Computer simulation results show
that the proposed method offers improved robustness over
conventional methods. The proposed method is also applicable
to other ANC applications.
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